期刊文献+

基于GARCH类模型的权证时变VaR值估计 被引量:1

Estimation of Time-varying VaR of Warrants based on GARCH-type Model
下载PDF
导出
摘要 由于权证收益率分布具有尖峰厚尾和非对称性的特征,其市场风险的估算运用GARCH类模型比较合适。本文选取包钢JTB1的日收盘价格序列为样本,分别用EGARCH、TGARCH模型估计样本期间内日VaR值,并进行了比较。结果表明,EGARCH模型较好地预测了损失结果,而TGARCH模型则低估了风险。因此,基于EGARCH模型对VaR值的计算能更好地反映权证收益率的波动特征和准确预计损失,可以为权证的风险管理提供较为可靠的风险度量工具。 Because the yield distribution of warrants has the characteristics of peak and fat-tail, the estimation of warrant market risk used to apply GARCH-type models. Based on the use of EGARCH and TGARCH models, this paper estimates the daily VaR of BaoGangJTB1 samples and makes a comparison between them, with selecting the daily closing price series. The conclusion is that EGARCH model predicts loss better than TGARCH model, and TGARCH model underestimates risk. So the calculation of VaR based on EGARCH model is more reasonable and accurate, and it could be a reliable tool to measure risk for warrants market risk management.
作者 黄宇红
出处 《上海管理科学》 2009年第6期9-13,共5页 Shanghai Management Science
基金 湖北省教育厅科学技术研究计划资助项目(Q20091510) 武汉工程大学人文社科基金项目资助(R200908)
关键词 权证 时变VaR GARCH warrant time-varying VaR GARCH
  • 相关文献

参考文献13

  • 1A. I. Klbzun, E. A. Kuznetsov. Analysis of criteria VaR and CVaR. Journal of banking and finance,2006.30:779-796.
  • 2Acerbi,Carlo and Dkri,Tasehe. Expeeted Shortafll: a nautarl coherence of aletmative to value at Risk. Working paper, 2001. 30-45.
  • 3Allyaannis, Y, oefk, E. Exehange arte exposure, Hedging and the use of foreign curreney derivatives. Journal of International Money and Finnaee,2001,20:21-26.
  • 4Andrew KasaPi. Mastering Credit Derivatives. Prentice Halll, 1999. 32-42.
  • 5AnZner, PhiliPPe, FreddyDelbaen, Jean-Marc Eber, David Heath. Coherent Measures of risk. Mathmatical Finance, 1999,9 (3) :203-228.
  • 6Basel Committee on Banking SuPervision. Operational Risk Management. Bank for International Settlements, 1998, (9) : 1-40.
  • 7Basle Committee on Banking SuPevrision, A New CaPital Ade quaey Framework. June,Basel,Switzland:Bank for International Settlements, 1999. 10-19.
  • 8Bollerslev T. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 1986, (31) :307-327.
  • 9BLACK F,SCHOLES M. The pricing of option and corporate liabilities. Journal of Politieal Eeonomy,1973(5-6) :637-654.
  • 10Britten-Jones, Mark, Stephen M. Seaefer. Non-Linear Valueat-Risk. European Finance Review, 1988, 2 : 161-187.

二级参考文献11

  • 1Morgan, P. J.. Risk Metrics Technology, Document: 3rd ed. [M] . New York: Morgan Trust Company Global Research, 1995.
  • 2Jorison, P.. Value at Risk: The new benchmark for controlling market risk [M] . New York: The McGraw- Hill Companies, 1997.
  • 3Nelson, D. B.. Conditional heteroskedasticity in asset returns: a new approach [J] . Econometrica, 1991,(59) : 347 - 370.
  • 4Hamilton, D.. Time Series Analysis [M] . Princeton: Princeton University Press, 1994.
  • 5Kendall, P.. Techniques for verifying the accuracy of risk measurement models [ J] . Journal of Derivatives, 1995, (3) : 73- 84.
  • 6Engle, R. F., Ng, V.K.. Measuring and testing the impact of news on volatility [ J ] . Journal of Finance, (48) : 1749 - 1778.
  • 7Basle Committee on Banking Supervision. Amendment to the Capital Accord to Incorporate Market Risks[M] . Basle: Bank for International Settlements, 1996.
  • 8Smithson, C., Minton, L.. Value at risk [J] . Risk, 1996, (9) : 25 - 27.
  • 9Duffie, D., Pan, J.. An overview of value at risk [J] . Journal of Derivatives, 1997, (4): 7-49 .
  • 10王志诚,唐国正,史树中.金融风险分析的VaR方法[J].科学,1999,51(6):15-18. 被引量:21

共引文献92

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部