期刊文献+

广义基本解方法求解具有一类特殊热源的热传导方程反边界值问题

An Extended Method of Fundamental Solutions to the Problems of Inverse Boundary Value of the Heat-conduction Equation Involving One Specific Type of Heat Source
下载PDF
导出
摘要 给出一种求解具有一类特殊热源的非齐次热传导方程反边界值问题的无网格方法,即广义基本解方法.该方法将问题的解分成特解和相应齐次问题的解两个部分:齐次解用基本解方法求解,而特解则是利用源项的特殊性由相应的特征方程的基本解近似得到.最后给出数值例子说明该方法的稳定性和有效性. A meshless method, the extended method of fundamental solutions, is proposed to solve inverse boundary value problems for nonhomogeneous heat conduction involving one specific type of heat source. In the method, the solution is split into two parts, the particular and homogenous solutions. The homogenous solution is evaluated by the method of fundamental solutions, while an approximation of the particular solution is derived by using the fundamental solutions of the associated eigenvalue equations obtained due to the type - specificity of heat source. Numerical results are presented to verify the reliability and efficacy of the proposed method.
出处 《嘉兴学院学报》 2009年第6期23-29,共7页 Journal of Jiaxing University
基金 嘉兴学院科研(常规)重点课题(70108014)
关键词 基本解方法 反边界值问题 热传导方程 method of fundamental solutions inverse boundary value problems heat - conduction equation
  • 相关文献

参考文献12

  • 1FAIRWEATHER G, KARAGEORGHIS A. The method of fundamental solutions for elliptic boundary value problems [ J ]. Adv Comput Math, 1998, 9 (1/2) : 69 -95.
  • 2GOLBERG M A, CHEN C S. The method of fundamental solutions for potential, Helmhohz and diffusion problems [ C] //Boundary Integral Methods - Numerical and Mathematical Aspects, GOLBERG M A. Southampton, Boston: Computational Mechanics Publications, 1998: 103-176.
  • 3YONG D L, TSAI C C, MURUGESAN K, et al. Time -dependent fundamental solutions for homogeneous diffusion problem [ J]. Engrg Anal Bound Elem, 2004, 28 : 1463 - 1473.
  • 4HON Y C, WEI T. A fundamental solution method for inverse heat conduction pro - blem [ J]. Engrg Anal Bound Elem, 2004, 28 : 489 - 495.
  • 5HON Y C, WEI T. The method of fundamental solutions for solving multidimensional inverse heat conduction problems [ J ]. CMES: Comput Model Engrg Sci, 2005, 7:119 -132.
  • 6MERA N S. The method of fundamental solutions for the backward heat conduction problem [ J]. Inv Prob Sci Engrg, 2005, 13 (1): 79 -98.
  • 7DONG C F, SUN F Y, MEMG B Q. A method of fundamental solutions for inverse heat conduction problem in an anisotropic medium [J]. Engrg Anal Bound Elem, 2007, 31 : 75 -82.
  • 8董超峰,孙方裕.基本解方法求解各向异性材料中热传导方程的时间反向问题[J].浙江大学学报(理学版),2007,34(1):33-39. 被引量:5
  • 9ALVES C J S, CHEN C S. A new method of fundamental solutions applied to nonhomogeneous elliptic problems [ J ]. Adv Comput Math, 2005, 23:125-142.
  • 10HANSEN P C. Truncated SVD solutions to discrete ill - posed problems with ill - determined numerical rank [ J]. SIAM J Sci Statist Comput. 1990, 11 (3) : 503 -518.

二级参考文献19

  • 1王钧,孙方裕,金邦梯.基本解方法求解一个三维线弹性力学反问题[J].浙江大学学报(理学版),2006,33(2):134-138. 被引量:4
  • 2OZISIK M N.Heat Conduction[M].New York:A Wiley-Interscience Publication,1980.
  • 3LIJIMA K,ONISHI K.Lattice-free finite difference method for backward heat conduction problems[J].Comput Stud,2004,5:3-14.
  • 4GUPTA N,CHANDRA S.Temperature prediction model for controlling casting superheat temperature\[J].ISIJ International,2004,44:1517-1526.
  • 5HAN H,INGHAM D B,YUAN Y.The boundary element method for the solution of the backward heat conduction equation[J].J Comput Phys,1995,116(4):292-299.
  • 6MERA N S,ELLIOTT L,INGHAM D B,et al.An iterative boundary element method for solving the onedimensional backward heat conduction problem[J].International J of Heat and Mass Transfer,2001,44(10):1937-1946.
  • 7KUPRADZE A D,ALEKSIDZE M A.The method of functional equations for the approximate solution of certain boundary value problems[J].Computational Mathematics and Mathematical Physics,1964,4:82-126.
  • 8FAIRWEATHER G,KARAGEORGHIS A.The method of fundamental solutions for elliptic boundary value problems[J].Adv Comput Math,1998,9(1,2):69-95.
  • 9GOLBERG M A,CHEN C S.The method of fundamental solutions for potential,Helmholtz and diffusion problems[C]//GOLBERG M A.Boundary Integral Methods.Southampton,Boston:Computational Mechanics Publications,1998:103-176.
  • 10HON Y C,WEI T.A fundamental solution method for inverse heat conduction problem[J].Engrg Anal Bound Elem,2004,28:489-495.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部