期刊文献+

三次Hermite插值曲线的细化优化 被引量:2

Thinning and Optimization of Cubic Hermit Curves
下载PDF
导出
摘要 在给定端点及其切矢方向的条件下,通过在相邻两节点之间插入一个中间节点,研究三次Hermite插值曲线的优化问题.如果以与曲率有关的二阶导数为目标,证明插入节点与不插入节点的情形是一样的,体现三次Hermite插值曲线的一种特性.如果以与挠率有关的三阶导数为目标,给出优化三次Hermite曲线的计算公式,从而提出一种新的曲线构造方法.实例表明了方法的有效性. Given .some points and their tangent vectors, this paper studies the problem of the optimization of cubic Hermite interpolation curves. According to the objective of second--order derivative related to curvatures, it is proved that there is no difference whether we insert a knot or not. And it presents a characteristic of cubic Hermite interpolation curves. According to the objective of third--order derivative related to torsions, the formula to calculate the cubic optimized Hermite interpolation curves is given. And then we propose a new method to construct curves. The results show the effectiveness of this method.
作者 裴芳 韩旭里
出处 《计算技术与自动化》 2009年第4期68-71,共4页 Computing Technology and Automation
基金 国家自然科学基金项目(10871208) 湖南省自然科学基金项目(08JJ3009)
关键词 三次Hermite插值 能量优化 曲线表示 计算机辅助几何设计 cubic hermite interpolation energy optimization the representation of curves computer aided geometric design
  • 相关文献

参考文献9

  • 1DE BOOR C. High accuracy geometric Hermite interpolation [J]. Computer Aided Geometric Design,1987,4(4) :269-278.
  • 2吴宗敏.参数有理三次Hermite插值.高校计算数学学报,1993,15(2):70-76.
  • 3HOLLIG K, KOCH J. Geometric Hermite interpolation[J]. Computer Aided Geometric Design,1995,13(6):567-580.
  • 4HOLLIG K, KOCH J. Geometric Hermite interpolation with maximal order and smoothness [J ] . Computer Aided Geometric Design, 1996,13(8): 681 -695.
  • 5IMRE J. Cubic parametric curve of given tangent and curvature[J].Computer Aided Geometric Design,1998,30(1):1-9.
  • 6REIF U. On the local existence of the quadratic geometric Hermite interpolation[J]. Computer Aided Geometric Design, 1999,16(8) : 217-221.
  • 7ROBERT J. Renka. Shape-preserving interpolation by fair discrete space curves[J]. Computer Aided Geometric Design, 2005,22 (8) :793-809.
  • 8HAN Xuli. Cubic trigonometric polynomial curvets with a shape parameter [J]. Computer Aided Geometric Design,2004,21(6):535- 548.
  • 9苏步青 刘鼎元.计算几何[M].上海:上海科技出版社,1980..

共引文献19

同被引文献21

  • 1孔明,孙希平,王永骥.一种改进的基于类间方差的阈值分割法[J].华中科技大学学报(自然科学版),2004,32(7):46-47. 被引量:21
  • 2朱庆生,李云峰,邓青青,曹渝昆,傅鹤岗.结合图像重建和L系统的虚拟植物原型系统设计[J].农业工程学报,2007,23(4):179-182. 被引量:18
  • 3金澈清 钱卫宁 官学庆.不确定性数据流管理技术.中国计算机学会通讯,5(4):37-42.
  • 4Halatchev M,Gruenwald L.Esfimating missing values in related sensor data streams[C]//Proceedings of the 11th International Conference on Management of Data, Hyderabad,India, 2005: 83-94.
  • 5Li Ying-shu, Ai Chun-yu, Deshmukh W P, et al.Data estimation in sensor networks using physical and statistical methodologies[C]// Proceedings of the 28th IEEE International Conference on Distributed Computing Systems, Beijing, China, 2008: 538-545.
  • 6Pei Jian, Hua Ming, Tao Yu-fei, et al.Query answering techniques on uncertain and probabilistic data:tutorial summary[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,Vancouver,2008: 1357-1364.
  • 7Hua Ming,Pei Jian,Zhang Wen-jie,et al.Ranking queries on uncertain data: a probabilistic threshold approach[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.New York: ACM Press, 2008 : 673-686.
  • 8Wu Min-ji,Xu Jian-liang.Monitoring top-k query in wireless sensor networks[C]//Proceedings of the 22nd lntemational Conference on Data Engineering,lCDE'06,2006: 143-231.
  • 9Hida Y, Huang P,Nishtala R.Aggregation query under uncertainty in sensor networks[R].Berkeley: Department of Electrical Engineering and Computer Science,University of California,2004.
  • 10Madden S.Intel Berkeley research lab data[EB/OL].(2003). http ://berkeley.intel-research.net/labdata.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部