期刊文献+

一种基于Contourlet变换的多尺度纹理分割的新算法 被引量:5

NEW ALGORITHM OF MULTISCALE TEXTURE IMAGE SEGMENTATION BASED ON CONTOURLET TRANSFORM
下载PDF
导出
摘要 受到基于模型的纹理分析方法的启发,提出了一种新的特征提取方法—有限混合纹理模式(Finite Texture Mixture Pattern,FTMP).FTMP是一个二元组的集合,可以通过聚类的方法进行计算.首先,基于Contourlet变换计算纹理的多尺度多方向变化信息;其次,对各尺度、各方向的变化信息分别进行聚类.这些聚类中心以及它们所占的比例组成的二元组的集合就构成了纹理图像的FTMP,反应了不同尺度不同方向的主要变化信息.这种纹理特征的计算方法充分利用了基于模型方法的基本思想,但却避免了复杂的参数计算.在FTMP的基础上,本文给出相应的纹理分割框架CFTMPseg,并通过定量和定性实验验证了所提算法的有效性. A new feature extraction method, finite texture mixture pattern (FTMP), was proposed inspired by the basic idea of pattern-based texture analysis methods. FTMP was a two-tuplet set, which could be obtained by clustering methods. Firstly, the multi-scale and multi-direction variations were calculated based on the Contourlet transform. Secondly, these variation information at different scale and in different direction were clustered into groups respectively. The centers and their corresponding proportion made up FTMP, which reflected the primary information's variations of different scales and different directions. Such a feature extraction method made full use of the idea of pattern-based method, but avoided the complicated parameter estimation and expression computation. Thus a supervised multi-scale texture image segmentation algorithm based on Contourlet transform-CFTMPseg was proposed based on FTMP, and its effectiveness was proven by quantitative and qualitative experiments.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第6期450-455,共6页 Journal of Infrared and Millimeter Waves
基金 国家重点基础研究发展计划(973计划)课题(2006CB701303) 优秀国家重点实验室项目(40523005) 863计划资助(2006AA12Z132)
关键词 CONTOURLET变换 有限混合纹理模式 局部变化模式 纹理分割 Contourlet transform finite texture mixture pattern local variable pattern texture segmentation
  • 相关文献

参考文献10

  • 1Lam B, Ciesielski V. Discovery of Human-Competitive Image Texture Feature Extraction Programs Using Genetic Programming [ C ]. Genetic and Evolutionary Computation Conference, Seattle : 2004,2 : 1114-1125.
  • 2Reed T R, Hans du Buf J M. A review of recent texture segmentation and feature extraction techniques [ J ]. Graphic Model and Image Understanding, 1993,57 ( 3 ) : 359-372.
  • 3Haralick R M, Shanmugan K, Dinstein I H. Texture features for image classification[J]. IEEE Transactions on System, Man, and Cybernetics, 1973, SMC-3 (6) : 610-621.
  • 4吴高洪,章毓晋,林行刚.利用小波变换和特征加权进行纹理分割[J].中国图象图形学报(A辑),2001,6(4):333-337. 被引量:55
  • 5Li Y, Gong P. An efficient texture image segmentation algorithm based on the GMRF model for classification of remotely sensed imagery [ J ]. International Journal of Remote Sensing,2005,26(22) :5149-5159.
  • 6Panjwani D K, Healey G. Markov random field models for unsupervised segmentation of textured color images [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995.17 ( 10 ) :939-954.
  • 7Liu G Y, Wang L G, Xie W, et al. New texture segmentation approach based on muhiresolution MRFs with variable weighting parameters in wavelet domain [ C ]. SPIE: MIPPR, Wuhan,2007,6786(6786IO) :1-8.
  • 8Choi H, Baraniuk R G. Muhiscale image segmentation using wavelet-domain hidden Markov models [ J ]. IEEE Transactions on Image Processing, 2001,10 ( 9 ) : 1309- 1321.
  • 9Shapiro L S G. Computer Vision[M]. Prentice Hall,2001.
  • 10边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.12.

二级参考文献5

  • 1Salari E,Ling Z.Texture segmentation using hierarchical wavelet decomposition[].Pattern Recognition.1995
  • 2Daubechies I.Orthogonal bases of compactly supported wavelets[].Communications in Pure Applied Mathematics.1988
  • 3Brodatz P.Textures: A photographic album for artists and designer[]..1966
  • 4Laws K I.Rapid texture identification[].Proceedings of SPIE the International Society for Optical Engineering.1980
  • 5Lu C S,Chung P C,Chen C F.Unsupervised texture segmentation via wavelet transform[].Pattern Recognition.1997

共引文献72

同被引文献61

  • 1安宁,林树忠,刘海华,崔慧.图像处理方法研究及其应用[J].仪器仪表学报,2006,27(z1):792-793. 被引量:34
  • 2刘冬梅,沈君愉,王丽君.小波变换在图像相关识别中的应用[J].激光技术,2004,28(6):641-644. 被引量:9
  • 3刘忠轩,彭思龙.方向EMD分解与其在纹理分割中的应用[J].中国科学(E辑),2005,35(2):113-123. 被引量:34
  • 4赵银娣,张良培,李平湘.广义马尔可夫随机场及其在多光谱纹理影像分类中的应用[J].遥感学报,2006,10(1):123-129. 被引量:13
  • 5Zhou Z.F., Cao J.Z. and Liu W.H., Contourlet-based image denoising algorithm using adaptive windows, IEEE Conference on Industrial Electronics and Applications, 2009: 3654-3657.
  • 6Wang X.K. and Gao J.H., Image denoising method based on nonsubsampled contourlet transform and ban- delet transform, 2009 First International Conference on Information Science and Engineering, 2009: 1278- 1281.
  • 7Chen X.W., Yu G.L. and Gong J.B., Contourlet-l.3 texture image retrieval system, 2010 International Conference on Wavelet Analysis and Pattern Recognition, 2010: 49-54.
  • 8Yang J.Y., Hou C.P. and Xu W.L., Image coding via sparse contourlet representation, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010: 3048-3051.
  • 9Do, M.N. and Vetterli, M., The contourlet transform: an efficient directional multiresolution image represen- tation, IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
  • 10Do, M.N. and Vetterli, M., Contourlets: a new directional multiresolution image representation, Conference Record of the Thirty-Six2h Asilomar Conference on Signals, Systems and Computers, 2002, 1: 497-501.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部