期刊文献+

基于离散曲波变换和支持向量机的掌纹识别方法 被引量:7

PALMPRINT RECOGNITION BASED ON DISCRETE CURVELET TRANSFORM AND SUPPORT VECTOR MACHINE
下载PDF
导出
摘要 提出了一种基于离散曲波变换和支持向量机的掌纹识别方法.首先将所有掌纹样本图像和测试图像通过基于W rapp ing的快速离散曲波变换进行分解,从而获得不同尺度、不同角度的曲波变换系数;掌纹重要特征信息包含在曲波变换分解系数中的低频系数中,因此将分解系数变换形成特征向量后作为特征参数送入支持向量机中进行学习训练;最后将训练好的支持向量机用于掌纹分类.基于香港理工大学Palmprint掌纹数据库进行了大量实验,实验结果证实所提方法的识别正确率相对优于小波变换方法和其它几种经典方法. A muhiscale palmprint recognition method based on discrete curvelet transform and support vector machine was proposed. First, all palmprint images were decomposed by using discrete curvelet transform via wrapping. As a result, curvelet coefficients in different scales and various angels were obtained. The important feature information of palmprint was ineluded in the low frequency coefficients of curvelet transform decomposition coefficients. After the decomposition coeffi- cients were transformed into feature vectors, they were regarded as feature parameters and sent into SVM for training. Finally, SVM was used for classification of palmprint. The experiments were performed in the PolyU Palmprint database. The results indicate that the proposed method has better performance than wavelet-based method and other classical methods.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第6期456-460,共5页 Journal of Infrared and Millimeter Waves
基金 国家发改委重大项目(CNGI04-13-2T) 国家高技术研究发展计划资助项目(2005AA121130) 国家自然科学基金资助项目(60602025)
关键词 曲波变换 支持向量机 掌纹识别 curvelet transform support vector machine(SVM) palmprint recognition
  • 相关文献

参考文献18

  • 1Yan Y, Zhang Y J. Discriminant projection embedding for face and palmprint recognition [ J ]. Neurocomputing, 2008, 71(16-18) :3534-3543.
  • 2Jia W, Huang D S, Zhang D. Palmprint verification based on robust line orientation code [ J ]. Pattern Recognition, 2008,41 (5) : 1504-1513.
  • 3Kong A, Zhang D, Kamel M. Three measures for secure palmprint identification [ J ]. Pattern Recognition, 2008,41 (4) :1329-1337.
  • 4Chen G Y, Xie W F. Pattern recognition with SVM and dual-tree complex wavelets [J].Image and Vision Computing, 2007,25 ( 6 ) : 960-966.
  • 5Pan X, Ruan Q Q. Palmprint recognition using Gabor feature-based (2D) 2PCA[ J]. Neuro computing,2008,71 ( 13- 15) :3032-3036.
  • 6吴介,裘正定.掌纹识别中的特征提取算法综述[J].北京电子科技学院学报,2005,13(2):86-92. 被引量:20
  • 7Zhang T P, Fang B,Yuan Y, et al. Muhiscale facial structure representation for face recognition under varying illumination [ J ]. Pattern Recognition, 2009,42 ( 2 ) : 251 -258.
  • 8Jadhav D V, Holambe R S. Feature extraction using Radon and wavelet transforms with application to face recognition [ J ]. Neurocomputing, 2009,72 ( 7-9 ) : 1951-1959.
  • 9Candes E J, Demanet L, Donoho D L, et al. Fast Discrete Curvelet Transforms[ R]. Applied and Computational Mathematics. California Institute of Technology,2005:1-43.
  • 10Candes E J, Donoho D L. New tight frames of eurvelets and optimal representations of objects with C2 singularities [ J ]. Commun. on Pure and Appl. Math, 2004,57 ( 2 ) : 219-266.

二级参考文献36

共引文献221

同被引文献75

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部