期刊文献+

双解析函数的一般复合边值问题关于边界曲线的稳定性 被引量:1

The stability of the general compound boundary value problem for bianalytic functions about boundary curve
下载PDF
导出
摘要 开口弧段Γ上的双解析函数的Riemann边值问题与单位圆周L上双解析函数的Hilbert边值问题复合而成的一般复合边值问题,当L与Γ发生微小的光滑摄动后,借助于推广的拉甫伦捷夫近似于圆的共形映射,将星形域映为单位圆域,从而得出摄动后的问题的解的表达式,同时讨论了解的稳定性情况,并给出误差估计. For the general compound boundary value problems combining Riemann boundary value problem for bianalytic functions on an open arc Γ and Hilbert boundary value problem for bianalytic functions on a unit circle L , when smooth perturbation happens for Γ and L , by extending Lavrentjev's conformal mapping on a region approximating to a unit disc from a star-like domain onto a unit disc, the authors show the solutions of the perturbed problem. They also discuss the stability of the solutions and give error estimates.
作者 林娟 谢碧华
出处 《纯粹数学与应用数学》 CSCD 2009年第4期816-821,共6页 Pure and Applied Mathematics
基金 福建省自然科学基金(2008J0187) 福建省教育厅科技项目(JA08255)
关键词 双解析函数 复合边值问题 光滑摄动 共形映射 稳定性 bianalytic functions, compound boundary value problem, smooth perturbation, conformal mapping, stability
  • 相关文献

参考文献5

二级参考文献21

  • 1曾岳生.双解析函数的Haseman边值问题[J].系统科学与数学,2004,24(3):417-423. 被引量:4
  • 2赵桢.双解析函数与复调和函数以及它们的基本边值问题[J].北京师范大学学报(自然科学版),1995,31(2):175-179. 被引量:74
  • 3赵桢,四川师范大学学报,1994年,17卷,2期,14页
  • 4王见定,共轭解析函数,1988年
  • 5维库阿 依 涅,广义解析函数,1960年
  • 6钟同德.多复变函数哥两型积分的边界性质.数学学报,1965,15(2):227-241.
  • 7Tutchke W. Boundary value problem for generalized analytic functions of several complex variables[J]. Ann.Polon. Math.,1981,38:227-238.
  • 8Gilbert R, Li Mingzhong. Nonlinear boundary value problem for certain second-order overdetermind elliptic system[J]. Complex Variables,1993, 22:11-22.
  • 9Akal M, Begehr H. On the Pompeiu operator of higher order and applications[J]. Complex Variables,1997,32(3):233- 261.
  • 10钟同德,黄沙.多兀复分析[M].石家庄:河北教育出版社,1989.

共引文献103

同被引文献17

  • 1邓琴.Bazilevic函数相邻两系数模之差的估计[J].数学学报(中文版),2006,49(5):1195-1200. 被引量:8
  • 2Brannan D A, Taha T S. On some classes of bi -univalent functions [ J]. Mathematical Analysis and Its Applications, 1985,2:18 -21.
  • 3Taha T S. Topics in univalent function theory [ D ]. London:University of London, 1981.
  • 4Brannan D A, Clunie J, Kirwan W E. Coefficient estimates for a class of starlike functions[ J ]. Canad J Math, 1970,22:476 -485.
  • 5Lewin M. On a coefficient problem for bi -univalent functions[ J]. Proc Am Math Soc, 1967,18 (1):63 -68.
  • 6Brannan D A, Clunie J G. Aspects of contemporary complex analysis[ C ]//Pro Nato Advan Study Insti. Durham, 1979.
  • 7Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in Izl < 1 [J]. Arch Rational Mech Anal,1969,32(2) :100 -112.
  • 8Frasin B A, Aouf M K. New subclasses of bi- univalent functions[ J]. Appl Math Lett,2011,24:1569 -1573.
  • 9Xu Q H, Gui Y C, Srivastava H M. Coefficient estimates for a certain subclass of analytic and bi - univalent functions [ J ]. Appl Math Left ,2012,25 (6) :990 - 994.
  • 10Srivastava H M, Mishra A K, Gochhayat P. Certain subclasses of analytic and bi - univalent functions [ J ]. Appl Math Lett, 2010,23 : 1188 - 1192.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部