期刊文献+

基于多种特征选择的NB组合文本分类器设计

Design of NB Combination Text Classifier Based on Various Feature Selection
下载PDF
导出
摘要 针对朴素贝叶斯(NB)分类器在分类过程中存在诸如分类模型对样本具有敏感性、分类精度难以提高等缺陷,提出一种基于多种特征选择方法的NB组合文本分类器方法。依据Boosting分类算法,采用多种不同的特征选择方法建立文本的特征词集,训练NB分类器作为Boosting迭代过程的基分类器,通过对基分类器的加权投票生成最终的NB组合文本分类器。实验结果表明,该组合分类器较单NB文本分类器具有更好的分类性能。 There are some shortcomings when it uses single Na?ve Bayes(NB) classifier to classify text.For example,the classification model is sensitive to samples,and the precision is always hard to be improved.This paper proposes a method that creates different feature set which is used in training NB classifier using different method to extract text features in each iteration of Boosting procedure.An NB combination classifier for text categorization is designed based on different feature selection methods.Experimental result shows that the combination classifier is more effective than single NB classifiers.
作者 樊康新
出处 《计算机工程》 CAS CSCD 北大核心 2009年第24期191-193,共3页 Computer Engineering
基金 南通大学自然科学基金资助项目(08Z030)
关键词 特征选择 朴素贝叶斯 组合文本分类器 BOOSTING算法 feature selection Naive Bayes(NB) combination text classifier Boosting algorithm
  • 相关文献

参考文献5

  • 1Aas K, Eikvil A. Text Categorization: A Survey[R]. Norwegian Computing Center, Technical Report: #941, 1999.
  • 2Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers[J]. Machine Learning, 1997, 29(2/3): 131-163.
  • 3Schapire R E, Singer Y. Boostexter: A Boosting-based System for Text Categorization[J]. Machine Learning, 2000, 39(2/3): 135-168.
  • 4Yang Yiming, Pederson J O. A Comparative Study on Feature Selection in Text Categorization[C]//Proc. of the 14th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997: 412-420.
  • 5宋枫溪,高林.文本分类器性能评估指标[J].计算机工程,2004,30(13):107-109. 被引量:33

二级参考文献2

  • 1Sebastiani F. Machine Learning in Automated Text Categorization.ACM Computing Surveys, 2002, 34(1): 1-47
  • 2YANG Yiming. An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval, 1999, 1(1-2): 69-903.周水庚.一个无须词典支持和切词处理的中文文档分类系统.计算机研究与发展,2001,38(7):839-844

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部