摘要
针对Chan-Vese模型(C-V模型)存在收敛缓慢等缺陷,给出一种基于边缘检测函数尺度变换的水平集图像分割算法。引入边缘检测函数对C-V模型进行改进,在不降低分割质量的前提下,提高图像分割的速度。为了增强改进模型的灵活性,提出对边缘检测函数进行尺度变换的方法。实验结果表明,改进模型有良好的分割效果,尺度变换能有效加快改进模型的演化速度,保持分割过程的稳定性。
To deal with the disadvantages of Chan-Vese model(C-V model),such as convergence slowness,a level set image segmentation algorithm based on scale transform of edge detection function is proposed.This paper improves the C-V model by introducing the edge detection function,and increases the speed of image segmentation without lowering the quality of segmentation.In order to boost up the flexibility of the improved model,a technique of scale transform to act on the edge detection function is proposed.Experimental results show that the improved model can achieve good effect,and the scale transform can effectively speed up the evolution of the improved model and maintain the stability of segmentation process.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第24期202-204,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60573158
10771213
70601033)
关键词
图像分割
偏微分方程
水平集
边缘检测函数
尺度变换
image segmentation
partial differential equations
level set
edge detection function
scale transform