期刊文献+

一种新的SAR图像目标检测算法 被引量:1

Novel Target Detection Algorithm for SAR Image
下载PDF
导出
摘要 提出一种与数据有关的基与固定基相结合的合成孔径雷达(SAR)图像检测算法,分别提取2种不同空间下表示的目标特征,将这些特征在不同空间中融合并进行调制,形成显著图,从而将目标特征凸显出来,利用目标的先验知识检测目标,使用ADTS高分辨率机载SAR目标数据进行仿真。实验结果表明,该算法能够有效突出待测图像中的目标区域,并抑制非目标区域,具有较高的检测精度。 A Synthetic Aperture Radar(SAR) image detection algorithm which unifies with the data related base and the fixed base is proposed.The target features which are extracted in two kind of different spaces are fused separately.They are modulated each other.The target features can be protruded by this algorithm.The targets are detected by using the priori knowledge in the saliency map.Experimental results with ADTS target high-resolution airborne SAR data show that the target area can pop out with the background being restrained and the algorithm has higher detection accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第24期213-215,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60672140) 全国优秀博士学位论文作者专项基金资助项目(200237) 教育部新世纪优秀人才支持计划基金资助项目(NCET-05-0912)
关键词 非负矩阵分解 GABOR滤波器 目标检测 合成孔径雷达图像 Non-negative Matrix Factorization(NMF) Gabor filter target detection Synthetic Aperture Radar(SAR) image
  • 相关文献

参考文献5

  • 1陈新武,刘玮,龚俊斌,田金文.基于Contourlet-S变换的纹理图像检索系统[J].计算机工程,2009,35(16):211-213. 被引量:2
  • 2林树宽,乔建忠,王国仁,郑刚,董俊.基于核方法的非线性时间序列预测建模[J].计算机工程,2007,33(17):23-25. 被引量:2
  • 3Battiti R. Using Mutual Information for Selecting Features in Supervised Neural Net Learning[J]. IEEE Trans on Neural Networks, 1994. 5(4): 537-550.
  • 4Lee T S. hnage Representation Using 2D Gabor Wavelets[J]. IEEE Trans. on PAMI, 1996 18(10): 959-971.
  • 5Novak L M. Performance of a High-resolution Polari Metric SAR Automatic Target Recognition System[J]. The Lincoln Laboratory Journal, 1993, 6(1): 11-24.

二级参考文献15

  • 1陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70. 被引量:86
  • 2沈建强,耿兆丰,邹轩.基于小波变换的织物纹理方向检测方法[J].计算机工程,2007,33(6):182-184. 被引量:13
  • 3Do M N, Vetterli M. Contourlets: A Directional Multiresolution Image Representation[C]//Proc. of International Conference on Image Processing. Rochester, USA: [s. n.], 2002: 357-360.
  • 4Cunha D, Zhou Jianping, Do M. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications[J]. IEEE Transactions on image Processing, 2006, 15(10): 3089-3101.
  • 5Kokare M, Chatterji B N, Biswas P K. Comparison of Similarity Metrics for Texture hnage Retrieval[C]//Proc. of IEEE TENCON Conference. Bangalore, India: [s. n.], 2003: 571-575.
  • 6Randen T. Brodatz Texture Images[EB/OL]. (2004-09-16). http:// www.ux.uis.no/-tranden/brodatz.html.
  • 7Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
  • 8Grassberger P,Procaccia I.Measuring the Strangeness of Strange Attractors[J].Physica D,1983,9(1/2):189-208.
  • 9Scholkopf B,Smola A.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10(5):1299.
  • 10Cao L J,Tay F E H.Support Vector Machine with Adaptive Parameters in Financial Time Series Forecasting[J].IEEE Transactions on Neural Networks,2003,14(6):1506-1518.

共引文献2

同被引文献13

  • 1李彦鹏,黎湘,庄钊文.基于Sugeno模糊积分的目标识别效果评估[J].系统仿真学报,2005,17(5):1175-1178. 被引量:6
  • 2李彦鹏,黎湘,王宏强,庄钊文.基于模糊聚类分析的目标识别效果评估[J].现代雷达,2005,27(8):14-17. 被引量:7
  • 3李彦鹏,黎湘,庄钊文,梁甸农.应用多级模糊综合评判的目标识别效果评估[J].信号处理,2005,21(5):528-533. 被引量:10
  • 4Cetin M,Karl W C,Castanon D A.Analysis of the Impact of Feature-enhanced SAR Imaging on ATR Performance[C]//Proc.of SPIE'02.Orlando,USA:[s.n.],2002:134-145.
  • 5Novak L M,Owirka G J,Weaver A L.Automatic Target Recognition Using Enhanced Resolution SAR Data[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(1):157-175.
  • 6de Vore M D,O'Sullivan J A.Performance Complexity Study of Several Approaches to Automatic Target Recognition from SAR Images[J].IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):632-648.
  • 7Clark L G,Velten W J.Image Characterization for Automatic Target Recognition Algorithm Evaluation[J].Optical Engineering,1991,30(2):147-153.
  • 8Chen Yin,Chen Genshe,Blum R S,et al.Image Quality Measures for Predicting Automatic Target Recognition Performance[C]//Proc.of IEEE Aerospace Conference.Big Sky,USA:IEEE Press,2008.
  • 9Air Force Research Laboratory.Sensor Data Management System MSTAR[EB/OL].[2010-02-22].http://www.sdms.afrl.af.mil/data sets/mstur.
  • 10Chen Yin,Blasch E,Chen Huimin,et al.Experimental Featurebased SAR ATR Performance Evaluation Under Different Operational Conditions[C]//Proc.of International Society for Optical Engineering.Orlando,USA:[s.n.],2008.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部