期刊文献+

基于形状相似距离的K-means聚类算法 被引量:8

K-means clustering algorithm based on the shape similarity distance
下载PDF
导出
摘要 把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基于形状相似距离的K-means算法比采用传统距离的K-means算法,聚类准确度显著提高。 In this paper, we represent vectors as objects of the feature space, and present the relationship between the difference of vectors and shape similarity. With this idea, the K-means algorithm based on the shape similarity distance (SSD-K-means) is proposed. These approaches have been tested on three well - known datasets from the UCI repository. Experiment results show that, in the data processing contains shape message, SSD-K-means can achieve higher accuracy than K-means algorithm with the classical distances.
作者 苑津莎 李中
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2009年第6期98-103,共6页 Journal of North China Electric Power University:Natural Science Edition
关键词 聚类 K—means算法 相似度 距离 形状 clustering K-means-algorithm similarity distance shape
  • 相关文献

参考文献14

  • 1Jain A K, Dubes R C. Algorithms for clustering [M]. Englewood Cliffs, N. J. : Prentice Hall, 1988.
  • 2钱卫宁,周傲英.从多角度分析现有聚类算法(英文)[J].软件学报,2002,13(8):1382-1394. 被引量:86
  • 3Jiawei Han, Micheline Kamber. Data mining: concepts and techniques [M]. Morgan Kaufmann Publishers, 2006.
  • 4Pang-Ning Tan,Michael Stcinbach,Vipin Kumar.数据挖掘导论[M].北京:人民邮电出版社,2006.
  • 5Duda R O, Hart P E, Stork D G. Pattern classification, 2nd ed [M]. Wiley, 2001.
  • 6Mao J, Jain A K. A self - organizing network for hyperellipsoidal clustering [J ]. IEEE Trans. Neural Networks, 1996, 7 (2): 16-29.
  • 7Cao Yongqiang, Wu Jianhong. Dynamics of projective adaptive resonance theory model: the foundation of PART algorithm [J ]. IEEE Trans. Neural Network, 2004, 15 (2) : 245- 260.
  • 8De Castro L N, Von Zuben F J. An evolutionary immune system network for data clustering [C]. Proceedings of the Sixth Brazilian Symposium on Neural Networks. Rio de Janeiro, 2000.
  • 9Zakai M. General distance criteria [ J ]. IEEE Trans Information Theory, 1964, (1) : 94 - 95.
  • 10Sebe N, Lew M S, Huijsmans D P. Toward improved ranking metrics [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22 ( 10 ) : 1132 - 1143.

二级参考文献36

  • 1[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu.
  • 2[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801.
  • 3[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181.
  • 4[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297.
  • 5[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114.
  • 6[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84.
  • 7[7]Beyer, K.S., Goldstein, J., Ramakrishnan, R., et al. When is 'nearest neighbor' meaningful? In: Beeri, C., Buneman, P., eds. Proceedings of the 7th International Conference on Data Theory, ICDT'99. LNCS1540, Jerusalem, Israel: Springer, 1999. 217~235.
  • 8[8]Ester, M., Kriegel, H.-P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noises. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 1996. 226~231.
  • 9[9]Ester, M., Kriegel, H.-P., Sander, J., et al. Incremental clustering for mining in a data warehousing environment. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York: Morgan Kaufmann, 1998. 323~333.
  • 10[10]Sander, J., Ester, M., Kriegel, H.-P., et al. Density-Based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998,2(2):169~194.

共引文献115

同被引文献76

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部