期刊文献+

最优联盟结构生成算法中的分支限界技术 被引量:1

Branch-and-Bound Technique for Generation Algorithm of Optimal Coalition Structure
下载PDF
导出
摘要 讨论多Agent系统中的最优联盟结构生成问题.对于联盟值以特征函数表示的情况下,提出了一种分支限界技术.该技术用联盟大小所代表的整数多个二部拆分作为当前搜索空间的多个分支,以已经求得的局部联盟值的下界和当前所得到的最优值所构造出的剪枝函数来限界.这样,若当前要搜索的一个分支——二部拆分的上界小于所构造的剪枝函数时,该二部拆分分支所对应的大量二部划分就不需进行分解,从而减少了搜索时间.该分支限界技术可整合到当前所出现的各种联盟结构生成算法中.为了测试该技术的有效性,本文将该技术应用到了Rothkopf所提出的DP算法和Rahwan等人所提出的IDP算法中.在具有21个Agent系统中,带有分支限界的BBDP(Branch Bound Dynamitic Programming)算法比不带有分支限界的DP算法可节省时间58.2%;带有分支限界的比不带有分支限界的IDP算法可节省时间17.8%. Concerned with optimal coalition structure generation in multi-agent systems. For characteristic function game representations, we propose a branch-and bound technique, presented in the form of possible bipartite partition and bound of coalition structure value, that reduces the intractability of the coalition structure generation problem by pruning coalition structures which cannot belong to any optimal structure. It is because that the upper value of searching coalition structures which have the same size of coalition is lower than prune function. These techniques can be incorporated into many potential coalition structure generation algorithms. In order to test the approach effectiveness, we only compare the sequential application of DP (Dynamic Programming) algorithm of Rothkopf and IDP(Improved Dynamic Programming) algorithm of Rahwan both with and without the branch-and-bound technique. Following the MAS literature, we show that the proposed branch-and bound technique reduces the number of bipartite partition evaluated by a considerable amount. For example, in a system of 21 agents, in DP algorithm, fewer than 58.2% of bipartite partitions need not be evaluated when the branch-and bound technique is employed. In IDP algorithm, fewer than 17.8% of bipartite partitions need not be evaluated.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2009年第6期76-80,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(60496323) 山东省教育厅科技计划项目资助(J07JYJ24)
关键词 最优联盟结构 整数二部拆分 二部划分 联盟值的上界和下界 分支限界 optimal coalition structure bipartite of integer bipartite partition upper and lower bound of coalition value branch-and-bound
  • 相关文献

参考文献10

  • 1Carmton P, Shoham Y, Steinberg R. Combinatorial Auctions[ M]. Massachusetts: USA MIT Press,2007.
  • 2刘惊雷,童向荣,张伟.一种快速构建最优联盟结构的方法[J].计算机工程与应用,2006,42(4):35-37. 被引量:10
  • 3苏射雄,胡山立,林超峰,郑盛福.基于局部最优的联盟结构生成算法[J].计算机研究与发展,2007,44(2):277-281. 被引量:16
  • 4张新良,石纯一.多Agent联盟结构动态生成算法[J].软件学报,2007,18(3):574-581. 被引量:25
  • 5Rahwan T, Ramchurn S D, Dang V D,et al. Near-Optimal Anytime Coalition Structure Generation[C]//Proceedings of the 20th International Joint Conference on Artificial Intelligence(IJCAI-07), in Hyderabad, India, 2007:2365 - 2371.
  • 6Rahwan T, Ramchurn S D, Giovannucci A, et al. Anytime Optimal Coalition Structure Generation[ C]//Proceedings of the 22rid Conference on Artificial Intelligence (AAAI-07), In Vancouver, Canada, 2007 : 1184 - 1190.
  • 7Shehory O, Kraus S. Methods for Task Allocation Via Agent Coalition Formation[J]. Artificial Intelligence, 1998, 101 (1/2) : 165 - 200.
  • 8Sandholm T W, Larson K, Andersson M, et al. Coalition Structure Generation with Worst Case Guarantees[J]. Artificial Intelligence, 1999, 111 (1/2) : 209 - 238.
  • 9Rahwan T, Jennings N R. An Improved Dynamic Programming Algorithm for Coalition Structure Generation[ C] //Proceedings of the 7th International Conference on Autonomous Agents and Multi-Agent Systems(AAMAS-08), Portugal, 2008 : 1417 - 1420.
  • 10Rothkopf M H, Pekec A, Harstad R M. Computationally Manageable Combinatorial Auctions [ J ]. Management Science, 1998,44 (8) : 1131 - 1147.

二级参考文献21

  • 1刘惊雷,童向荣,张伟.一种快速构建最优联盟结构的方法[J].计算机工程与应用,2006,42(4):35-37. 被引量:10
  • 2Alfread V Aho.The design and analysis computer algorithms[M]. Addison-Wesley Publishing Company,l19-122.
  • 3王晓东.计算机算法分析与设计[M].北京:电子工业出版社,2001-01.197-198.
  • 4Jennings NR,Dang VD.Generation coalition structures with finite bound from optimal guarantees.In:Proc.of the AAMAS 2004.vol.2.2004.572-579.http://ieeexplore.ieee.org/iel5/9442/29991/01373523.pdf
  • 5Anderson J,Tanner B,Baltes J.Dynamic coalition formation in robotic soccer.In:Proc.of the AAAI 2004.2004.1-11.http://brian.tannerpages.com/Publications/44E1CC68-DAA1-440F-910F-8D138192E7BF.html
  • 6Klusch M,Blankenburg B.On safe kernel stable coalition formation among Agents.In:Proc.of the AAMAS 2004.vol.2.2004.580-587.http://ieeexplore.ieee.org/iel5/9442/29991/01373525.pdf
  • 7Klush M,Gerber A.Dynamic coalition formation among rational Agents.IEEE Intelligent Systems,2002,17(3):42-47.
  • 8Konishi H.Coalition formation as a dynamic process.Journal of Economic Theory,2003,110:1-41.
  • 9Tsvetovat M,Sycara K.Customer coalitions in electronic marketplace.In:Proc.of the 4th Int'l Conf.on Autonomous Agents.2000.263-264.http:// www.cs.cmu.edu/~softagents/papers/agents2k.ps.gz
  • 10Sandholm T,Larson K,Andersson M,et al.Coalition structure generation with worst case guarantees.Artificial Intelligence,1999,111(1-2):209-238.

共引文献35

同被引文献21

  • 1刘惊雷,童向荣,张伟.一种快速构建最优联盟结构的方法[J].计算机工程与应用,2006,42(4):35-37. 被引量:10
  • 2苏射雄,胡山立,林超峰,郑盛福.基于局部最优的联盟结构生成算法[J].计算机研究与发展,2007,44(2):277-281. 被引量:16
  • 3Iwasaki A, Ueda S, Hashimoto N, et al. Finding core for coalition structure utilizing dual solution. Artificial Intelligence, 2015,22 (5) : 49- 66.
  • 4Brink R V D, Dietz C. Union values for games with coalition structure. Decision Support Systems,2014,66(10) :1-8.
  • 5Rahwan T, Michalak T, Wooldridge M, et al. Anytime coalition structure generation in multi- agent systems with positive or negative externalities. Artificial Intelligence, 2012,186 ( 6 ) .. 95 122.
  • 6Zick Y, Markakis E, Elkind E. Arhitration and stability in cooperative games with overlapping coalitions. Journal of Artificial Intelligence Research, 2014,50 ( 1 ) : 847 - 884.
  • 7Balas E, Padberg M W. Set partitioning: A survey. SIAM review,1976,18(4) :710-760.
  • 8Tsvetovat M, Sycara K, Chen Y, et al. Customer coalitions in the electronic marketplace. In: Proceedings of the 4th International Conference on Autonomous Agents. New York, USA: ACM Press, 2001 : 263 - 264.
  • 9Dang V D, Dash R K, Rogers A, et al. Overlapping coalition formation for efficient data fusion in multi-sensor networks. In: Proceedings of the 21th AAAI Conference on Artificial Intelligence (AAAI). Boston, USA .. AAAI Press, 2006:635-640.
  • 10Wu Q, Hao J K. Solving the winner determination problem via a weighted maximum clique heuristic. Expert Systems with Applications, 2015,42(1) ..355-365.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部