期刊文献+

程序树层次化结构统计模型及MOSES改进算法

Hierarchical Statistical Structure Model of Program Trees and MOSES Algorithm Improvement
下载PDF
导出
摘要 为提高MOSES效率,提出了一种新的程序树层次化结构统计模型.该模型通过统计分析同类群,自动发现子树特征来指导优化.该模型不需要hBOA算法那样对变量集合进行建模,也不需要像MRTS算法那样遍历小规模的种群来发现潜在的有指导意义的子树.通过解决人工蚂蚁问题对算法进行了测试,结果表明改进后的MOSES算法更加高效. To improve the efficiency of MOSES algorithm, this paper proposes a new hierarchical statistical model of program trees. This model conducts hierarchical statistical analysis on program trees and can generate potential subtrees automatically to guide algorithm optimization. This model leaves out the operations of creating models for the variables set like the previous hBOA algorithm; and also doesn't need the tedious operations to traversal small population to find certain superior individuals as subtrees like the MRTS method. Experimental results on solving artificial ant problem indicate that our proposed algorithm is more effective and efficient than the previous hBOA-based MOSES.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2009年第6期132-136,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
关键词 自主程序演化 MOSES(语义进化搜索优化) 子树 人工蚂蚁问题 competent programming evolution meta-optimizing semantic evolutionary search( MOESES) subtree artificial ant problem
  • 相关文献

参考文献9

  • 1Moshe Looks. Competent Program Evolution[D]. Washington: Washington University in St. Louis, 2006.
  • 2John R Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection[ M]. Cambrid Ge, MA: MIT Press, 1992:1-161.
  • 3Moshe Looks, Ben Goertzel, L'ucio de Souza Coelho. Clustering Gene Expression Data via Mining Ensembles of Classification Rules Evolved Using MOSES[ C] // Genetic and Evolutionary Computation Conference (GECCO), 2007:407 - 411.
  • 4Moshe Looks, Ben Goertzel, L'ucio de Souza Coelho. Understanding Microarray Data through Applying Competent Program Evolution [ C]//Genetic and Evolutionary Computation Conference (GECCO), 2007 : 430.
  • 5Martin Pelikan, Martin Pelikan, David E Goldberg. Escaping Hierarchical Traps with Competent Genetic Algorithms[ C]// Proceedings of Genetic and Evolutionary Computation Conference (GECCO2001), 2001:511 - 518.
  • 6Martin Pelikan. Bayesian Optimization Algorithm: From Single Level to Hierarchy[R]. Doctoral Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL. Also IlliGAL Report No. 2002023, 2002.
  • 7Langdon W B, Poli R. Why Ants Are Hard. Genetic Programming[ R]. Proceedings of the Third Annual Conference. Morgan Kanfmann, Madison, 1998 : 193 - 201.
  • 8Lawrence Davis. Genetic Algorithms and Simulated Annealing [ M]. Los Altos, CA: Morgan Kaufrrkann Publishers, 1987.
  • 9Steffen Christensen, Franz Oppacher. Solving the Artificial Ant on the Santa Fe Trail Problem in 20,696 Fitness Evaluations[ C] // Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO2007), 2007: 1574- 1579.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部