期刊文献+

噪声的随机微分方程模型与应用

Models of Stochastic Differential Equations for Noise and Applications
下载PDF
导出
摘要 研究使用随机微分方程(SDEs)产生各种噪声的时间序列样本,该SDEs等效于一个Mark-ov扩散过程。由Markov扩散过程的平稳分布可以得到SDEs模型中漂移系数和扩散系数与待求噪声所满足的概率密度函数之间的解析关系,从而可以确定SDEs模型中的系数。给出了一种线性幂函数的扩散系数模型,讨论了此种类型的扩散系数对SDEs数值算法的影响。给出了SDEs模型的数值算法,并针对复杂随机变量提出了两种不同的SDEs模型生成方法。以Rayleigh分布和χ2分布为例进行仿真分析,验证本文所提方法的准确性和有效性。 Stochastic differential equations (SDEs) are investigated to be used to generate samples of the time series of noise. The SDEs is equivalent to a Markov diffusion process. The coefficients of SDE model can be calculated from the relationship between the drift coefficient and the diffusion coefficient and the probability distribution function of the aimed random variables by the aid of the stationary distribution of Markov diffusion processes. A model of the diffusion coefficient as a linear power function is presented. The effects of the different diffusion coefficients on the numerical algorithm of SDEs are discussed. The numerical algorithm of SDEs is outlined, and two different types of numerical algorithm for complex random variables are provided. Finally, taking the Rayleigh distribution and X^2 distribution as examples, this paper verifies the accuracy and effectiveness of the proposed method.
出处 《中国电子科学研究院学报》 2009年第6期630-635,共6页 Journal of China Academy of Electronics and Information Technology
基金 国家自然科学基金项目(60772061) 江苏出入境检验检疫局科研项目(2009KJ14) 江苏省自然科学基金项目(BK2009567)
关键词 无线通信 随机微分方程 有色噪声 相关随机变量 wireless communications stochastic differential equations (SDEs) colored noise correlated random variables
  • 相关文献

参考文献14

  • 1KONTOROVITCH V, LYANDRES V. Stochastic Differential Equations : An Approach to the Generation of Con- tinuous Non-Gaussian Processes[ J ]. IEEE Trans on SP, 1995, 43(10) : 2 372-2 385.
  • 2PRIMAK S, LYANDRES V, KAUFMAN O, et al. On the Generation of Correlated Time Series with a Given Probability Density Function [ J ]. Signal Processing, 1999, 72(2): 61-68.
  • 3KONTOROVITCH V, LYANDRES V, PRIMAK S. The Generation of Diffusion Markovian Processes with Proba- bility Density Function Defined on Part of the Real Axis [J]. IEEE SP Lett., 1996, 3(1):19-21.
  • 4MENEMENLIS N. Stochastic Models for Multipath Fading Channels [ D ]. Montred : McGill University, 2002.
  • 5FENG T, FIELD T R, HAYKIN S. Stochastic Differential Equation Theory Applied to Wireless Channels [ J ]. IEEE Trans Commun, 2007, 55 (8) : 1 478-1 483.
  • 6BEDE L, MUNSON D C. Generation of a Random Sequence Giving a Jointly Specified Marginal Distribution and Autocovariance[ J]. IEEE Trans on ASSP, 1982, 30 (6) : 973-983.
  • 7SONDHI M M. Random Processes with Specified Spectral Density and First-order Probability Density [ J ]. Bell System Technical Journal, 1983, 62: 679-700.
  • 8RANGASWAMY M, WEINER D. Non-Gaussian Random Vector Undentification Using Spherically Invariant Random Process[J]. IEEE Trans on AES, 1993, 29 ( 1 ) : 111-123.
  • 9扈罗全,余瀚,朱洪波.有色噪声的扩散过程模型[J].中国电子科学研究院学报,2007,2(2):115-118. 被引量:3
  • 10HIGHAM D J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations [ J ]. Slam Review, 2001, 43(2): 525-546.

二级参考文献9

  • 1[1]BEDE L,MUNSON D C.Generation of a Random Sequence Giving a Jointly Specified Marginal Distribution and Autocovarianee[J].IEEE Trans on ASSP,1982,30(6):973-983.
  • 2[2]SONDHI M M.Random Processes with Specified Spectral Density and First-order Probability Density[J].Bell System Technical Journal,1983,62:679-700.
  • 3[3]RANGASWAMY M,WEINER D.Non-Gaussian Random Vector Undentification Using Spherically Invariant Random Process[J].IEEE Trans on AES,1993,29(1):111-123.
  • 4[4]KONTOROVITCH V,LYANDRES V.Stochastic Differential Equations:an Approach to the Generation of Continuous Non-Gaussian Processes[J].IEEE Transactions on Signal Processing,1995,43(10):2372-2385.
  • 5[5]PRIMAK S,LYANDRES V,KAUFMAN O,et al.On the Generation of Correlated Time Series with a Given Probability Density Function[J].Signal Processing,1999,72(2):61-68.
  • 6[6]KLEBANER F.INTRODUCTION to Stochastic Calculus with Application[M].London:Imperial College Press,2001.
  • 7[7]KLOEDEN P E,PLATEN E,SCHURZ H.Numerical Solution of SDE Through Computer Experiments[M].New York:Springer-Vedag,1994.
  • 8扈罗全,王正斌.一种有重拖尾特性的G-分布海杂波模型[J].信号处理,2007,(待出版).
  • 9[10]SPRINGER M D,THOMPSON W E.The Distribution of Products of Independent Random Variables[J].Journal of the Society for Industrial and Applied Mathematics,1966,14(3):511-526.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部