期刊文献+

血黏度增高致脑细胞膜电位及线粒体膜电位变化 被引量:3

Effects of high blood viscosity on cellular membrane potential and mitochondria membrane potential in brain cells of rats
下载PDF
导出
摘要 目的探讨血黏度增高致大鼠脑组织慢性缺血、缺氧后脑细胞膜电位和线粒体膜电位的变化。方法采用高分子右旋糖酐法建立血黏度增高大鼠模型,用血液黏度仪检测全血黏度;以DiBAC_4(3)和罗丹明123为细胞膜电位和线粒体膜电位的荧光指示剂,激光共聚焦显微镜观察并测量血黏度增高大鼠脑细胞悬液中细胞膜和线粒体膜电位荧光强度的变化。结果随注射次数的增加,造模时间延长,全血黏度逐渐升高,与造模时间呈正相关;血黏度增高大鼠脑细胞膜电位和线粒体膜电位变化显著,与造模时间呈时间依赖性关系。结论血黏度增高可导致脑细胞损伤;细胞膜电位和线粒体膜电位变化是造成脑细胞损伤的可能机制。 Objective To investigate the changes of membrane potential and mitochondria mem- brane potential on brain cells of rats after chronic ischemia and hypoxia induced by high blood viscosity, and the mechanism of brain cell damage. Methods Animal model of high blood viscos- ity was established by intravenous injection of high molecular dextran to rats. The whole blood viscosity was detected using automatic programming coagulation analyzer. The alterations of membrane potential and mitochondria membrane potential in brain cells were measured by con- focal laser scanning microscope using DiBAC4 (3) as membrane potential indicator and rhodamine 123 as mitoehondria membrane potential indicator. Results Membrane potential and mitochon- dria membrane potential in brain ceils of rats with high blood viscosity changed markedly, and they were correlated with the blood viscosity. Conclusion Chronic ischemia by high blood vis- cosity can lead to the injury of brain cells, and membrane potential and mitoehondria membrane potential changes are the possible mechanisms of brain cell damage.
出处 《兰州大学学报(医学版)》 CAS 2009年第4期39-42,共4页 Journal of Lanzhou University(Medical Sciences)
基金 甘肃省新药临床前研究重点实验室开放基金(GSKFKT-0703) 甘肃省自然科学基金暨中青年科技基金(3zs061-A25-0890) 兰州大学医学科研基金(010602)
关键词 血黏度增高 脑损伤 细胞膜电位 线粒体膜电位 激光共聚焦显微镜 大鼠 hyper viscosity brain damage membrane potential mitochondria membrane potential laser confocal scanning microscope rat
  • 相关文献

参考文献8

  • 1LIJIMA T, MISHIMA T, TOHYAMA M, et al. Mitochondrial membrane potential and intracellular ATP content after transient experimental ischemia in the cutured hippocampal neuron[J]. Neorochem Int, 2003, 43(3): 263-269.
  • 2SIMON L, SZILAGYI G, BORI Z, et al. (-)-D-Deprenyl attenuates apoptosis in experimental brain ischemia[J]. Eur J Pharmacol, 2001, 430(2-3): 235- 241.
  • 3WOLFF C, FUKS B, CHATELAIN P. Comparative study of membrane potential-sensitive fluorescent probes and their use in ion channel screening assays[J]. J Biomol Screen, 2003, 8(5): 533-543.
  • 4张杰,刘祯,景鹏,李国君.细胞线粒体膜电位的测量方法[J].首都医科大学学报,2006,27(1):124-125. 被引量:13
  • 5徐春红,曹红.NMDA受体在脑缺血中的作用和机制的研究进展[J].国际麻醉学与复苏杂志,2007,28(1):88-91. 被引量:6
  • 6SIMPSON P B, RUSSELL J T. Role of mitochondrial Ca^2+ regulation in neuronal and glial cell signaling[J]. Brain Research Reviews, 1998, 26: 72-81.
  • 7KATAYAMA Y, BECKER D P, TAMURA T, et al. Massive increase in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury[J]. Neurosurgy, 1990, 73:889-900.
  • 8KUZA L A, HABBERSETT R C, FREYER J P. Mitochondrial function in oncogene-transfected rat fibrobtasts isolate from muticellular spheroids[J]. Am J Physiol, 1997, 273(5): 1487-1495.

二级参考文献24

  • 1Przedlborski S,Jackson-Lewis V,Muthane V,et al.Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity[J].Ann Neurol,1993,34:715.
  • 2Sureda Fx,Gabriel C.Evalation of free radical production,mitochondrial membrance potential and cytoplasmic calium in mammalian neurons by flow cytometry[J].Brain Res Protoc,1999,4:280-287.
  • 3Emaus R K,Grunwald R,Lemasters J J,et al.Rhodamin123 as a probe of transmembrane potential in isolated Rat-liver mitochondria:spectral and metabolic properties[J].Biophys Acta,1986,850:436-448.
  • 4Pei L, Li Y, Zhang GY, et al. Mechanisms of regulation of tyrosine phosphorylation of NMDA receptor subunit 2B after cerebral ischemia/reperfusion. Acta Pharmacol Sin, 2000, 21 : 695-700.
  • 5Meng F, Guo J, Zhang Q, et al. Autophosphorylated calcium/calmodulin-dependent protein kinase Ⅱ alpha ( CaMKII alpha) reversibly targets to and phosphorylates N-methyl-D-aspartate receptor subunit 2B (NR2B) in cerebral ischemia and reperfusion in hippocampus of rats.Brain Res, 2003, 967: 161-169.
  • 6Meng F, Zhang G. Autophosphorylated calcium/calmodulin-dependent protein kinase Ⅱ alpha induced by cerebral ischemia immediately targets and phosphorylates N-methyl-D-aspartate receptor subunit 2B (NR2B)in hippocampus of rats. Neurosci Lett, 2002, 333 : 59-63.
  • 7Guo J, Meng F, Fu X, et al. N-methyl-D-aspartate receptor and L-type voltage-gated Ca^2+ channel activation mediate prolinerich tyrosine kinase 2 phosphorylation during cerebral ischemia in rats. Neurosci-Lett,2004, 355: 177-180.
  • 8Takaqi N, Sasakawa K,Besshoh S, et al. Transient ischemia enhances tyrosine phosphorylation and binding of the NMDA receptor to the Src homology 2 domain of phosphatidylinositol 3-kinase in the rat hippocampus. J Neurochem, 2003, 84: 67-76.
  • 9Liu Y, Zhang G, Gao C, et al. NMDA receptor activation results in tyrosine phosphorylation of NMDA receptor subunit 2A(NR2A) and interaction of Pyk2 and Src with NR2A after transient cerebral ischemia and reperfusion. Brain Res, 2001, 909: 51-58.
  • 10Friguls B, Petegnief V, Justicia C, et al. Activation of ERK and Akt signaling in focal cerebral ischemia: modulation by TGF-alpha and involvement of NMDA receptor. Neurobiol Dis, 2002, 11 :443-456.

共引文献17

同被引文献14

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部