摘要
1994年,Foulis和Bennett在表示不可精确测量的量子逻辑结构时引入了效应代数.该文用直接构造的方法,给出一类效应代数上的态表示定理.即,若Ω是紧的Hausdorff拓扑空间,令E(Ω)={f:f∈C(Ω),0≤f≤1},则φ是(E(Ω),,0,1)上的态当且仅当Ω上存在唯一的正则Borel概率测度μ使得对每个f∈(E(Ω),,0,1),φ(f)=∫_Ωfdμ.
In 1994, Foulis and Bennett introduced effect algebra to represent the unsharp quantum logic structure. In this paper, using the direct construction method, the authors present a state representation theorem of a class of effect algebras. That is, if Ω is a compact Hausdorff topological space, E(Ω)= {f: f ∈C(Ω, 0 ≤ f ≤ 1, then φ is a state of the effect algebra (E(Ω), Ο, 0, 1) if there exists a unique regular Borel probability measure μ on Ω such that for each f (E(Ω), Ο, 0, 1), φ (f) = ∫ Ω f dμ.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2009年第6期1518-1522,共5页
Acta Mathematica Scientia
关键词
效应代数
态
表示定理.
Effect algebras States Representation theorem