期刊文献+

一类效应代数的态表示定理 被引量:1

The State Representation Theorem of a Class of Effect Algebras
下载PDF
导出
摘要 1994年,Foulis和Bennett在表示不可精确测量的量子逻辑结构时引入了效应代数.该文用直接构造的方法,给出一类效应代数上的态表示定理.即,若Ω是紧的Hausdorff拓扑空间,令E(Ω)={f:f∈C(Ω),0≤f≤1},则φ是(E(Ω),,0,1)上的态当且仅当Ω上存在唯一的正则Borel概率测度μ使得对每个f∈(E(Ω),,0,1),φ(f)=∫_Ωfdμ. In 1994, Foulis and Bennett introduced effect algebra to represent the unsharp quantum logic structure. In this paper, using the direct construction method, the authors present a state representation theorem of a class of effect algebras. That is, if Ω is a compact Hausdorff topological space, E(Ω)= {f: f ∈C(Ω, 0 ≤ f ≤ 1, then φ is a state of the effect algebra (E(Ω), Ο, 0, 1) if there exists a unique regular Borel probability measure μ on Ω such that for each f (E(Ω), Ο, 0, 1), φ (f) = ∫ Ω f dμ.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第6期1518-1522,共5页 Acta Mathematica Scientia
关键词 效应代数 表示定理. Effect algebras States Representation theorem
  • 相关文献

参考文献9

  • 1Foulis D J, Bennett M K. Effect algebras and unsharp quantum logics. Found Phys, 1994, 24:1331-1352.
  • 2Kadison R V, Ringrose J R. Fundamentals of the Theory of Operator Algebra. Graduate Studies in Mathematics. New York: American Mathematical Society, 1983.
  • 3Foulis D J, Greechie R, Ruttimann G. Filters and supports in orthoalgebras. Int J Theor Phys, 1992, 31: 789- 802.
  • 4Miklos R. Quantun Logics and Algebraic Approach. Norwelh Kluwer Academic Publishers, 1998.
  • 5Dvurecenskij A, Pulmannova S. New Trends in Quantum Structures. Dordrecht, Boston, London: Kluwer Academic Publishers, 2000.
  • 6Bratteli O, Robinson D W. Operator Algebras and Quantum Statistical Mechanics. New York, Heidelberg, Berlin: Springer-Verlag, 1979.
  • 7Goodearl K. Partially Ordered Abelian Groups with Interpolation. Providence, RI: American Mathematical Society, 1986.
  • 8Pulmannova S. Effect algebras with riesz decomposition property and AF C^*-algebras. Foundations of Physics, 1999, 29:1389 -1401.
  • 9Rudin W. Real and Complex Analysis. Beijing: China Machine Press, 2003.

同被引文献15

  • 1杜鸿科,邓春源,李启慧.量子效应的下确界问题[J].中国科学(A辑),2006,36(3):320-332. 被引量:2
  • 2BENNETT M K, FOULIS D J. Interval and scale effect algebras[J]. Advances in Applied Mathematics, 1997,91 (19) :200-215.
  • 3GUDDER S,GREECHIE R. Uniqueness and order in sequential effect algebras [J]. International Journal of Theoretical Physics, 2005,44(7) : 755-770.
  • 4GUDDER S, GREECHIE R. Sequential products on effect algebras [J]. Reports on Mathematical Physics, 2002,49 (1) : 87-111.
  • 5MA Zhi-hao. Note on ideals of effect algebras [J]. Information Sciences, 2009,179 (5) : 505-507.
  • 6DVURECENSKIJ A, PULMANNOVA S. New trends in quantum structures [M]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 7GUDDER S, PULMANNOVA S. Representation theorem for convex effect algebras [J]. Coment Math Univ, 1998,39 (4): 645-659.
  • 8RAVINDRAN K. On a structure theory of effect algebras [D]. Manhattan:Kansas State University,1996.
  • 9FOULIS D J, BENNETT M K. Effect algebras and unsharp quantum logics [J]. Foundations of Physics, 1994, 24: 1 331-1 352.
  • 10李永明.标度广义效应代数和标度效应代数的结构[J].数学学报(中文版),2008,51(5):863-876. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部