期刊文献+

线性流形上的广义反射矩阵反问题 被引量:3

Inverse Problems for Generalized Reflexive Matrices on a Linear Manifold
下载PDF
导出
摘要 设R∈C^(m×m)及S∈C^(n×n)是非平凡Hermitian酉矩阵,即R^H=R=R^(-1)≠±I_m,S^H=S=S^(-1)≠±I_n.若矩阵A∈C^(m×n)满足RAS=A,则称矩阵A为广义反射矩阵.该文考虑线性流形上的广义反射矩阵反问题及相应的最佳逼近问题.给出了反问题解的一般表示,得到了线性流形上矩阵方程AX_2=Z_2,Y_2~HA=W_2~H具有广义反射矩阵解的充分必要条件,导出了最佳逼近问题唯一解的显式表示. Let R ∈Cm×m and S ∈Cn×n be nontrivial unitary involutions, i.e., RH=R=R-1 ≠ ± Im and SH=S=S-1 ≠ ± In. A ∈Cm×n is said to be a generalized reflexive matrixif RAS=A. This paper is concerned with the inverse problem for generalized reflexive matrices on a linear manifold and the optimal approximation to a given matrix. The general expression of the solutions of the problem is presented. Sufficient and necessary conditions for equations AX2=Z2, Y2H A=W2H having a common generalized reflexive matrix solution on the linear manifold are derived. The expression of the solution for relevant optimal approximation problem is given.
作者 袁永新 戴华
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第6期1547-1560,共14页 Acta Mathematica Scientia
基金 国家自然科学基金(10271055)资助
关键词 反问题 最佳逼近 广义反射矩阵. Inverse problem Optimal approximation Generalized reflexive matrix
  • 相关文献

参考文献29

  • 1Chen H C. Generalized reflexive matrices: special properties and applications. SIAM J Matrix Anal Appl, 1998, 19:140-153.
  • 2Chen H C. The SAS domain decomposition method for structural analysis. CSRD Tech Report 754, Center for Supercomputing Research and Development. Urbana, IL: University of Illinois, 1988.
  • 3Chen W, Wang X, Zhong T. The structure of weighting coefficient matrices of harmonic differential quadrature and its application. Comm Numer Methods Eng, 1996, 12:455-460.
  • 4Datta L, Morgera S. On the reducibility of centrosymmetric matrices-applications in engineering problems. Circuits Systems Signal Process, 1989, 8:71-96.
  • 5Delmas J. On adaptive EVD asymtotic distribution of centro-symmetric covariance matrices. IEEE Trans Signal Process, 1999, 47:1402-1406.
  • 6Weaver J R. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors. Amer Math Monthly, 1985, 92:711-717.
  • 7Andrew A L. Eigenvectors of certain matrices. Linear Algebra Appl, 1973, 7:151 162.
  • 8Andrew A L. Solution of equations involving centrosymmetric matrices. Technometrics, 1973, 15:405-407.
  • 9Cantoni A, Butler P. Eigenvnlues and eigenvectors of symmetric centrosymmetric matrices. Linear Algebra Appl, 1976, 13:275-288.
  • 10Pye W C, Boullino T L, Atchison T A. The pseudoinverse of a centrosymmetric matrix. Linear Algebra Appl, 1973, 6:201- 204.

二级参考文献33

共引文献59

同被引文献23

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部