期刊文献+

两类具有最优代数免疫阶的奇变元布尔函数 被引量:1

Two classes of boolean functions with optimum algebraic immunity in odd number of variables
下载PDF
导出
摘要 奇变元的对称布尔函数中达到最优代数免疫阶的有且仅有两个:f0和f0+1.在此基础上构造了两类奇变元的具有最优代数免疫阶,有较高代数次数,并且非线性度等于2n-1-〔n-1 (n-1)/2〕的平衡非对称布尔函数. For an odd integer n≥3, f0 and f0 + 1 are the only n-variable symmetric boolean functions with maximum algebraic immunity(n+ 1)/2. This paper constructs two classes of balanced boolean functions in odd number of variables, having optimum algebraic immunity and algebraic high degree, and their nonlinearities are equal to 2^n-1-(n-1(n-1)/2).These functions are symmetric.
作者 苏为 曾祥勇
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2009年第4期332-338,346,共8页 Journal of Hubei University:Natural Science
基金 湖北省教育厅项目(D200610004)资助 湖北省教育厅教改项目(D20060211)资助
关键词 布尔函数 Walsh谱值 平衡性 非线性度 代数免疫阶 代数次数 boolean function Walsh spectrum balance,nonlinearity algebraic immunity algebraic degree
  • 相关文献

参考文献8

  • 1Courtoin N, Meier W. Algebraic attacks on stream ciphers with linear feedback[M]. Berlin: Springer Verlag, 2003:345-359.
  • 2Meier W, Pasalic E, Carlet C. Algebraic attacks and decomposition of boolean functions[M]. Berlin: Springer Verlag, 2004:474-491.
  • 3Qu L J,Li C, Feng K Q. A note on symmetric boolean functions with maximum algebraic immunity in odd number of variables[J].IEEE Transactions on Information Theory, 2007,53(8): 2908-2910.
  • 4Li N,Oi W F. Symmetric boolean funcions depending on an odd number of variables with maximum algebraic immunith[J]. IEEE Transactions on Information Theory,2006. 52(5):2271-2273.
  • 5Carlet C. A method of construction of balanced functons with optimum algebraic immunith[OL], http://eprint, ircr. org/2009/149.
  • 6MacWilliams F J, Sloane N J. The theory of error-correcting coder[M]. Amsterdam: North-Holland, 1977:150-153.
  • 7Dalai D K, Maitra S, Sarkar S. Basic theory in construction of boolean functions with maximum possible annihilator immunith[J]. Des Codes Cryptography, 2006,40 (1) : 41-58.
  • 8Canteaut A. Open problems related to algebraic attacks on stream ciphers[M].Berlin: Springer,2006:120-134.

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部