期刊文献+

一种数据域描述的加权支持向量回归算法

Weighted support vector regression algorithm based on data description
下载PDF
导出
摘要 针对支持向量回归中由于噪声和孤立点带来的过拟合问题,提出了一种基于支持向量数据域描述的加权系数函数模型,根据样本到特征空间最小包含超球球心的距离来确定其加权系数。将提出的加权系数模型用于加权支持向量回归中,一维数据集仿真表明,提出的模型可以有效减小回归误差,提高支持向量回归算法的抗噪声能力。 To overcome the problem of over-fitted caused by noises and outliers in support vector regress(SVR),weighted coefficient model based on support vector data description(SVDD) is used in this paper.The weighted coefficient value to each input sample is confirmed according to its distance to the center of the smallest enclosing hyper-sphere in the feature space.The proposed model is applied to weighted support vector regression(WSVR) for 1-dimensional data set simulation.The results indicate that the proposed method actually reduces the error of regression and yields higher accuracy than support vector regression(SVR) does.
作者 吴水亭
出处 《计算机工程与应用》 CSCD 北大核心 2009年第35期24-27,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60875034 高校博士点基金No.20060613007~~
关键词 支持向量回归 数据域描述 加权系数 support vector regression data description weighted coefficient
  • 相关文献

参考文献12

  • 1Vapnik VAn overview of statistical learning theory[J].IEEE Trans on NN, 1999,10(3 ) :988-999.
  • 2Cortes C,Vapnik V.Support vector networks[J].Machine Learning, 1995,20(4 ) : 273-297.
  • 3Osuna E, Freund R, Girosi F.Training support vector machines :An application to face detection[C]//Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.LosAlamitos,CA,USA:IEEE Computer Society, 1997:130-136.
  • 4Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2002, 46(6 ) : 389-422.
  • 5Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998,2 (2) : 147.
  • 6Zhang X G.Using class-center vectors to build support vector machines[C]//Neural Networks for Signal Processing Ⅸ:Proceedings of the 1999 IEEE Workshop.Wisconsin:IEEE.1999:33-37.
  • 7杜树新,吴铁军.回归型加权支持向量机方法及其应用[J].浙江大学学报(工学版),2004,38(3):302-306. 被引量:22
  • 8Lin C F,Wang S D.Fuzzy support vector machines[J].IEEE Trans Neural Networks, 2002,13 ( 2 ) : 464-471.
  • 9Toy F E H,Cao L J.Descending support vector machines for financial time series forecasting[J].Neural Processing Letters,2002,15(2): 179-195.
  • 10Toy F E H,Cao L J.Modified support vector machines in financial time series forecasting[J].Neuro Computing, 2002,48 : 847-861.

二级参考文献6

  • 1[2]LIN Chun-fu, WANG Sheng-de. Fuzzy support vector machines [J]. IEEE Trans on Neural Networks, 2002,13(2) :464-471.
  • 2[3]TOY F E H, CAO L J. Descending support vector machines for financial time series forecasting [J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 3[4]TOY F E H, CAO L J. Modified support vector machines in financial time series forecasting [J]. Neurocomputing, 2002, 48: 847- 861.
  • 4[5]VAPNIK V N. The nature of statistical learning [M].Berlin: Springer, 1995.
  • 5[6]FLAKE G W, LAWRENCE S. Efficient SVM regression training with SMO [J]. Machine Learning, 2002,41(1): 271-290.
  • 6[7]TAY F E H, CAO L. Application of support vector machines in financial time series forecasting [J]. Omega The International Journal of Management Science,2001, 29(4):309-317.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部