期刊文献+

扩展在上GF(3)新型自缩序列模型及研究 被引量:2

New model and studying of self-shrinking sequence developed on GF(3)
下载PDF
导出
摘要 自收缩序列是一类重要的伪随机序列,而周期和线性复杂度是序列伪随机性的经典量度。如何构造自缩序列的新模型,使生成序列具有大的周期和高的线性复杂度是一个重要的问题。针对这一问题,构造了GF(3)上一种新型的自缩序列模型,利用有限域理论,研究了生成序列的周期和线性复杂度,得到一些主要结论:周期上界3n,下界32骔n/3」;线性复杂度上界3n,下界32骔n/3」-1。进一步讨论了基于GF(3)上本原三项式和四项式的自缩序列的周期和线性复杂度。 Self-shrinking sequence is an important kind of pseudo-random sequences.Period and linear complexity are classic measures of pseudo-random sequences.So,it becomes an important issue to construct new models of self-shrinking sequence that could generate sequences with great period and high linear complexity.In view of this question,a new model of self-shrinking sequence over GF(3) is constructed.After the study of the period and linear complexity of the generated sequence using the theory of finite fields,there are some main conclusions:The upper bound of the period is 3^n ,the lower bound is 3^2[n/3];The upper bound of linear complexity is 3^n ,the lower bound is 3^2[n/3]-2 .Moreover,the period and linear complexity of the generated sequence based on primitive trinomials and quarternomials of degree n over GF(3) are discussed.
机构地区 郑州大学数学系
出处 《计算机工程与应用》 CSCD 北大核心 2009年第35期114-119,共6页 Computer Engineering and Applications
基金 河南省教育厅自然科学指导性项目NO.200510459003~~
关键词 自缩序列 周期 线性复杂度 本原三项式 本原四项式 self-shrinking sequence period linear complexity primitive trinomials primitive quarternomials
  • 相关文献

参考文献9

  • 1Meier W,Staffelbach O.The self-shrinking generator[C]//LNCS 950: Advances in Cryptology Eurocrypt'94.Berlin:Spring -verlag, 1995 : 205-214.
  • 2Blackburn S R.The linear complexity of the self-shrinking generator[J].IEEE Transactions of Information Theory,1999,45(6):2073- 2077.
  • 3张楠,戚文峰.基于三项和五项本原多项式的自收缩序列[J].信息工程大学学报,2004,5(2):4-8. 被引量:2
  • 4王锦玲,孔佩娟.多位 Self-shrinking 序列模型及研究[J].郑州工业大学学报,1998,19(2):119-122. 被引量:5
  • 5王锦玲,王娟,陈忠宝.上多位自收缩序列的模型与研究[C]//密码学进展--China Crypt’2007.成都:西南交通大学出版社,2007:299-300.
  • 6胡子濮,张玉清,肖国镇.对称密码学[M].北京:机械工业出版社,2002:56-57.
  • 7Coppersmith D,Krawczyk H.Mansour Y.The shrinking generator[C]// LNCS 1773 :Advance in Cryptology Eurocrypt'93.Berlin:SpringVerlag, 1993 : 22-39.
  • 8白恩健,董庆宽,肖国镇.自缩控生成器[J].西安电子科技大学学报,2004,31(2):264-268. 被引量:6
  • 9Lidl R,Niederretier H.Finite fields[M].[S.l.]:Addison-Wesley Publishing Company, 1983.

二级参考文献13

  • 1王锦玲.控制序列的构造与分析[J].信息工程学院学报,1993,12(2):32-38. 被引量:4
  • 2[1]D Coppersmith , H Krawczyk,Y Mansour. The Shrinking Generator[A]. Advances in Cryptology-EUROCRYPT'93 [C].Berlin:Springer-Verlag, 1993,773:22-39.
  • 3[2]W Meier,O Staffelbach . The Self-shrinking Generator[A].Advances in Cryptology-EUROCRYPT'94 [C].Berlin:Springer-Verlag, 1995,950:205-214.
  • 4[3]S R Blackburn.The Linear Complexity of the Self-shrinking Generator[J].IEEE Transactions of Information Theory,1999,45(6): 2073-2077.
  • 5[4]I Shparlinski . On Some Properties of the Shrinking generator[J]. Designs, Codes and Cryptography, 2001,23:147-156.
  • 6Rueppel R A, Stream Ciphers[M] . Contemporary, the Science of Infromafion. New York: IEEE Press, 1992, 65-134.
  • 7Gollman D, Chambers W G. Clock-controlled Shift Registers: a Review[J]. IEEE Journal on Selected Areas in Communications, 1989, 7(4) : 525-533.
  • 8Coppersmith D, Krawczys H, Mansour Y. The Shrinking Generator[ A]. Advances in Cryptolngy-Crypt'93, LNCS, Vol 765 [ C]. Berlin:Springer-Verlag, 1994. 22-39.
  • 9Meier W, Stafflebach O. The Self-shrinking Generator[ A]. Advances in Cryptology-Eurocrypt'94, LNCS, Vol 950[C]. Berlin:Springer-Vexlag, 1995. 205-214.
  • 10Gong G, Quan J S. The Editing Generator and Its Cryptanalysis[EB/OL]. http://www.cacr.math.uwaterloo.ca, 2002-12-28.

共引文献10

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部