摘要
自收缩序列是一类重要的伪随机序列,而周期和线性复杂度是序列伪随机性的经典量度。如何构造自缩序列的新模型,使生成序列具有大的周期和高的线性复杂度是一个重要的问题。针对这一问题,构造了GF(3)上一种新型的自缩序列模型,利用有限域理论,研究了生成序列的周期和线性复杂度,得到一些主要结论:周期上界3n,下界32骔n/3」;线性复杂度上界3n,下界32骔n/3」-1。进一步讨论了基于GF(3)上本原三项式和四项式的自缩序列的周期和线性复杂度。
Self-shrinking sequence is an important kind of pseudo-random sequences.Period and linear complexity are classic measures of pseudo-random sequences.So,it becomes an important issue to construct new models of self-shrinking sequence that could generate sequences with great period and high linear complexity.In view of this question,a new model of self-shrinking sequence over GF(3) is constructed.After the study of the period and linear complexity of the generated sequence using the theory of finite fields,there are some main conclusions:The upper bound of the period is 3^n ,the lower bound is 3^2[n/3];The upper bound of linear complexity is 3^n ,the lower bound is 3^2[n/3]-2 .Moreover,the period and linear complexity of the generated sequence based on primitive trinomials and quarternomials of degree n over GF(3) are discussed.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第35期114-119,共6页
Computer Engineering and Applications
基金
河南省教育厅自然科学指导性项目NO.200510459003~~
关键词
自缩序列
周期
线性复杂度
本原三项式
本原四项式
self-shrinking sequence
period
linear complexity
primitive trinomials
primitive quarternomials