期刊文献+

3G基站选址的智能优化实现 被引量:6

Realization of optimization for location of 3G base stations
下载PDF
导出
摘要 基站的位置和数量影响网络的服务质量。针对传统选址方法的不足,提出了一种基于免疫遗传算法的选址优化方法;给出了基站选址问题的多目标优化数学模型和实现过程。算法中采用了浓度调节选择概率机制,有效保证了抗体的多样性,避免了早熟收敛,并使用记忆细胞集来保存每代所产生的Pareto最优解;提出了一种邻近排挤算法对记忆细胞集进行更新、删除,保证了Pareto最优解集的分布均匀性。仿真结果表明,算法可以有效找到可行的基站布置方案,为实际工程应用提供了解决思路。 The number of base station location impacts the network quality of service.A new method is proposed based on immune genetic algorithm for site selection.The mathematical model of multi-objective optimization problem for base station selection and the realization of the process are given.The use of antibody concentration selection ensures the diversity of the antibody and avoiding the premature convergence,and the use of memory cells to store Pareto optimal solution of each generation.A exclusion algorithm of neighboring memory cells on the updating and deleting to ensure the Pareto optimal solution set of the distribution. The experiment results show that the algorithm can effectively find a number of possible base station and provide a solution for the practical engineering application.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第35期230-232,235,共4页 Computer Engineering and Applications
基金 广西省自然科学基金No.桂科自0991252~~
关键词 免疫遗传算法 基站选址 多目标优化 PARETO最优解 immune genetic algorithm base station location multi-objective optimization Pareto optimal solution
  • 相关文献

参考文献9

  • 1Calegari P,Cuidec F,Kuonen P,et al.Genetic approach to radio network optimization for mobile systems[C]//Proc IEEE VTC,Phoenix, 2003 : 755-759.
  • 2Jin K H.Genetic approach with a new representation for base station placement in mobile communications[C]//Proc IEEE VTC,Atlantic,2004:860-864.
  • 3Zitzler E.Evolutionary algorithms for multi-objective optimization: Methods and applications[M].[S.l.] : Shaker Verlag, 2005 : 11 - 12.
  • 4Larry R,Whitaker R M.Comparison and evaluation of multiple objective genetic algorithms for the antenna placement problem[J]. Mobile Networks and Applications,2006,10( 1 ) :79-88.
  • 5翟雨生,程志红,陈光柱,李柳,查蔓丽.基于免疫的多目标优化遗传算法[J].计算机应用研究,2007,24(3):50-52. 被引量:5
  • 6Maple C,Guo Liang,Zhang Jie.Parallel genetic algorithms for third generation mobile network planning[C]//International Conference on Parallel Computing in Electrical Engineering(PARELEC 2006), 2006 : 229-236.
  • 7李满林,杜雷,闻英友,王玉娜,王光兴.多目标优化遗传算法在移动网络规划中的应用[J].控制与决策,2003,18(4):441-444. 被引量:22
  • 8梁瑞鑫,张长水.一种基于免疫原理的多目标优化方法[J].小型微型计算机系统,2005,26(10):1770-1773. 被引量:8
  • 9陶媛,吴耿锋,胡珉.基于Pareto的多目标进化免疫算法[J].计算机应用研究,2009,26(5):1687-1690. 被引量:3

二级参考文献31

  • 1刘若辰,杜海峰,焦李成.一种免疫单克隆策略算法[J].电子学报,2004,32(11):1880-1884. 被引量:35
  • 2熊盛武,王琼,刘麟.一种解决函数优化问题的免疫算法[J].武汉理工大学学报,2005,27(3):84-86. 被引量:11
  • 3黄席樾,张著洪,何传江,等.现代智能算法理论及应用[M].北京,科学出版社.2004.
  • 4ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[ J]. IEEE Trans on Evolutionary Computation, 1999,3(4) :257-271.
  • 5KNOWLES J D, CORNE D W. Approximating the nondominated front using the Pareto archived evolution strategy [ J ]. Evolutionary Computation, 2000,8 (2) : 149-172.
  • 6CUTELLO V, NICOSIA G, PARVONE M. Exploring the capability of immune algorithms: a characterization of hypermutation operators [ C ]//Proc of the 3nd International Conference on Artificial Immune Systems. Berlin: Springer-Verlag, 2004:263-276.
  • 7TOMA N, ENDO S, YAMADA K, et al. Evolutionary optimization algorithm using MHC and immune network [ C ]//Proc of the 26th IEEE Annual Conference. Nagoya: Industrial Electronics Society, 2000,2849-2854.
  • 8TAN K C, LEE T H, KHOR E F. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization[J]. IEEE Trans on Evolutionary Computation, 2001,5 (6) :565-588.
  • 9ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm,technical report 103 [ R]. Zurich : Computer Engineering and Networks Laboratory ( TIK), Swiss Federal Institute of Technology (ETH) , 2001.
  • 10Hancock P J B. An empirical comparison of selection methods in evolutionary algorithm[A]. Evolutionary Computing: AISB Workshop[C]. Berlin: Springer-Verlag, 1994. 80-94.

共引文献33

同被引文献38

  • 1覃和仁,关琳,谢胜利.求解无线网络基站选址问题的一种改进遗传算法[J].计算机工程与应用,2004,40(15):72-73. 被引量:9
  • 2史云剑.谈VTS建设中雷达站的选址[J].航海技术,2005(6):37-38. 被引量:9
  • 3王玉娜,王秋华,陈新峰.3G网络规划中自动基站分布算法的研究[J].无线电工程,2006,36(9):4-6. 被引量:3
  • 4胡大伟,陈诚.遗传算法(GA)和禁忌搜索算法(TS)在配送中心选址和路线问题中的应用[J].系统工程理论与实践,2007,27(9):171-176. 被引量:49
  • 5Jaana L, Achim W, Tomas N. Radia Network Planning andOptimization for UMTS [M]. USA: John Wily & Sons Ltd, 2001.
  • 6Tutschku K. Demanded-based radio network planning of cellularmobile communication systems [C]// Proceedings SeventeenthRnnual Joint Conference of the IEEE Computer and CommunicationsSocieties. USA: IEEE, April 1998, 3 (29): 1054-1061.
  • 7Amaldi E, Capone A, Maiucelli F. Base station configuration andlocation problems in UMTS networks [C]// Proceedings of the 9thInternational Conference on Telecommunication Systems, Modelingand Analysis. Annals of Operations Research, 2001: 341-348.
  • 8Adelantado F,Salient 0,Perez J, Agusti R. Time Correlation of theIntercell to Intracell Interference Radia in a CDMA Network [J].IEEE Electronic Letters (S0013-5194), 2002, 38(25): 1735-1737.
  • 9Amaldi E, Capone A, Maiucelli F. Improved models and algorithmsfar UMTS radio planning [C]// Proceedings of IEEE VehicularTechnology Conference. USA: IEEE, 2001, 2: 920-924.
  • 10Larry R, Whitaker R M. Comparison and evaluation of multipleobjective genetic algorithms for the antenna placement problem [J].Mobile Networks and Applications (S1000-3428), 2006,10(1):79-88.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部