期刊文献+

基于图的关联规则改进算法 被引量:1

Revised Algorithm of Mining Association Rules Based on Graph
下载PDF
导出
摘要 关联规则挖掘是数据挖掘研究的最重要课题之一。基于图的关联规则挖掘DLG算法通过一次扫描数据库构建关联图,然后遍历该关联图产生频繁项集,有效地提高了关联规则挖掘的性能。在分析该算法基本原理基础上,提出了一种改进的算法—DLG#。改进算法在关联图构造同时构造项集关联矩阵,在候选项集生成时结合关联图和Apriori性质对冗余项集进行剪枝,减少了候选项集数,简化了候选项集的验证。比较实验结果表明,在不同数据集和不同支持度阈值下,改进算法都能更快速的发现频繁项集,当频繁项集平均长度较大时性能提高明显。 Mining association rules is one of the most important research field of data mining. The algorithm of mining association rules based on graph that named DLG scans the database once to construct an association graph, and then traverses the graph to generate frequent itemsets, which improves the performance of mining association rule efficiently. The basic principle of DLG is analyzed, a revised algorithm that named DLG# is proposed. The revised algorithm construct an association matrix and an association graph at the same time and in the phase of generating candidate itemsets the Apriori property based on association graph is utilized to prune the redundancy, thus the number of candidates is cut down and the validation of candidates is simple. Compared experiment results show that the revised algorithm can be more rapid to discovery frequent itemsets under different datasets and different support thresholds, the performance improve significantly when the average length of frequent itemsets is large.
作者 黄红星
出处 《计算机与数字工程》 2009年第12期38-41,162,共5页 Computer & Digital Engineering
关键词 数据挖掘 关联规则 频繁项集 关联图 关联矩阵 date mining, association rule, frequent itemsets, association graph, association matrix
  • 相关文献

参考文献9

  • 1Chen M S, Han J, Yu P S. Data Mining: An Overview from Database Perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8(6):866-883.
  • 2R. Agrawal, T. Imeliniski, A. Swami. Mining association rules between sets of items in large databases [C]. Proceedings of the ACM SIGMOD conference on management of data. New York : ACM, J 993 : 207 -216.
  • 3R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules[C]. Proceeding of the 20th inletnational Conference on very large database, Morgan Kaufman Pub Inc, 1994 : 487-499.
  • 4J. S. Park, M. S. Chen, P. S. Yu. An effective hash-based algorithm for mining association rules [C]. Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'95), San Jose, CA, 1995,3:175-186.
  • 5A. Savasere, E. Omiecinski, S. Navathe. An efficient algorithm for mining association rules in large databases[C]. Proc. 1995 Int. Conf. Very Large Data Bases (VLDB'95), Zurich, Switzerland, 1995,9 : 432-443.
  • 6H. Toivonen. Sampling large databases for association rules[C]. Proc. 1996 Int. Conf. Very Large Data Bases(VLDB'96), Bombay, India, 1996,9:134-145.
  • 7S. Brin, R. Motwani, J. D. Ullman, et al. Dynamic itemset counting and implication rules for market basket analysis[C]. Proc. 1997 ACM SIGMOD Int. Cone Management of Data ( SIGMOD'97 ), Tucson, AZ, 1997,3 : 255-264.
  • 8YEN S J, CHEN A I.P. An Efficient Approach to Discovering Knowledge from Large Databases [C]. Proceedings of The IEEE/ACM International Conference on Parallel and Distributed Information Systerns. Los Angeles: IEEE Computer Society Press, 1996 : 8- 18.
  • 9YEN S J, CHEN A L P. A Graph-Based Approach for Discovering Various Types of Association Rules[J]. IEEE Transactions on Knowledge and Data Engineering, 2001,13 (5):839 - 845.

同被引文献7

  • 1陈明,史忠植,王文杰.一种有效的基于图的关联规则挖掘算法[J].计算机应用,2006,26(11):2654-2656. 被引量:10
  • 2Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C]//Proc. of VLDB'94. Santiago, Chile: Is. n.], 1994: 487- 499.
  • 3Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proc. of SIGMOD'00. Dallas, USA: [s. n.], 2000.
  • 4Sunil J, Jain R C. A Dynamic Approach for Frequent Pattern Mining Using Transposition of Database[C]//Proc. of the 2nd International Conference on Communication Software and Networks. [S. 1.]: IEEE Press, 2010.
  • 5Yen S J, Chen L E A Graph-based Approach for Discovering Various Types of Association Rules[J]. IEEE Transactions on Knowledge and Data Engineering, 2001, 13(5): 839-845.
  • 6刘红星,王崇骏,谢俊元.基于图的最大频繁项集的生成算法[J].南京大学学报(自然科学版),2008,44(5):520-526. 被引量:2
  • 7张忠平,李岩,杨静.基于矩阵的频繁项集挖掘算法[J].计算机工程,2009,35(1):84-86. 被引量:19

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部