期刊文献+

关于幂等矩阵秩关系式的一个证明 被引量:1

A Proof of Rank Relations for Idempotent Matrix
下载PDF
导出
摘要 利用构作可逆矩阵的方法,证明了文献[2,3]中关于幂等矩阵秩的部分关系式。 In this paper,We establish some rank relations in [2,3] by constructing reversible matrices.
出处 《宿州学院学报》 2009年第6期81-82,共2页 Journal of Suzhou University
基金 安徽省重点教研项目(2007jyxm120) 宿州学院教授(博士)科研基金项目(2009jb02)
关键词 可逆矩阵 幂等矩阵 矩阵的秩 invertible mat rix idempotent matrix rank of marries
  • 相关文献

参考文献1

二级参考文献2

  • 1北京大学几何与代数教研室.高等代数(第二版)[M].北京:高等教育出版社,1988.
  • 2罗家洪.矩阵分析引论(第三版)[M].广州:华南理工大学出版社,2001.

共引文献5

同被引文献12

  • 1TIAN Y’STYAN G P H. Rank equalities for idempotent matrices with applications[J]. Journal of Computational and AppliedMathematics, 2006,191:7-97.
  • 2GROfi J ,TRENKLER G. Nonsingularity of the difference of two oblique projectors[J]. SIAM J Matrix Anal Appl, 2000, 21 :390-395.
  • 3BAKSALARY J K, BAKSALARY O M. Nonsingularity of linear combinations of idempotent matrices [J]. Linear AlgebraAppl,2004,388:25-29.
  • 4TIAN Y’STYAN G P H. Rank equalities for idempotent and involutory matrices [J]. Linear Algebra and Its Applications,2001,335:101-117.
  • 5TIAN Y. Rank equalities related to generalized Inverses of matrices and their applications[DB/OL]. [2011-08-06]. http://arxiv. org/abs math/0003224vl,2000-03-30:17-25.
  • 6MIKHAIL A CHEBOTAR, WEN-FONG KE,PJEK-HWEE LEE,et al. On maps preserving zero jordan products[J]. MonatshMath,2006,149:91-101.
  • 7FAREBROTHER R W, TRENKLER G. On generalized quadratic matrices[J]. Linear Algebra and Its Applications,2005,410:244-253.
  • 8HWA-LONG GAU, CHIH-JEN WANG, NGAI-CHING WONG. Invertibility and fredholmness of linear combinations ofquadratic,^-potent and nilpotent operators[J]. Operators and Matrices,2008,2(2) : 193-199.
  • 9TIAN Y,STYAN G P H. When does rank (ABC) = rank(AB) + rank(BC) — rank(B) hold? [J]. International Journal ofMathematical Education in Science and Technology ,2002 ,33 : 127-137.
  • 10KOLIHA J J,RAKOCEVIC V,STRASKRABA I. The difference and sum of projectors[J]. Linear Algebra Appl, 2004,388 :279-288.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部