期刊文献+

基于R-L定义的分数微分对流-弥散方程有限元解

A Riemann-Liouville definition based finite element solution for fractional advection-dispersion equation
原文传递
导出
摘要 分数微分对流-弥散方程(Fractional Advection-Dispersion Equation,FADE)是一种用于模拟多孔介质中溶质非费克迁移的新模型,然而由于分数微分定义的复杂性,仅能够获得特定的定解条件下FADE模型解析解.推导出了基于Riemman-Liouville(R-L)定义的FADE模型有限元解,当分数阶微分算子α=2时,该解与传统对流-弥散方程的有限元解相同.与Meerschart和Tadjeran(2004)的有限差分解及FADE模型的解析解的模拟结果相比,本文的有限元解在很大程度上能降低数值弥散现象,但当空间离散节点数目较大时(N>100),都会产生质量不守恒的现象.通过模拟结果和相关文献的分析比较得出,FADE模型的这种质量不守恒问题是由于R-L定义本身所引起的,解决该问题需要对FADE模型的数值解做进一步的研究. The fractional advection-dispersion equation (FADE) with non-local properties is a promising approach to describe the non-Fickian transport of contaminants in porous media. However, the analytical solutions of FADE can only be achieved with specific initial and boundary conditions. We presented a finite element (FEM) solution for the one-dimensional FADE based on the Riemann-Liouville (R-L) definition of the fractional derivative, which are convergences to the finite element solution for traditional ADE when α equals 2. The FEM solution is used to comparing the finite difference (FDM) solution and the analytical solution of the FADE. Results showed that the FEM scheme is better than the finite element solution with less numerical dispersion. Considerable mass conservancy problem occurs either in the FEM or FDM when the number of spatial discretization is larger than 100. This problem is caused by the R-L definition of fractional derivative. Further research is still needed to solve the mass conservancy problem occurring in the numerical solution of FADE.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2009年第6期695-700,共6页 Engineering Journal of Wuhan University
基金 国家科技支撑计划(编号:2006BAD11B06) 国家自然科学基金项目(编号:50779067 50639040) 教育部新世纪优秀人才支持计划(编号:NCET-05-0125) 教育部创新团队计划
关键词 分数微分对流-弥散方程 有限元解 R—L分数微分法 fractional advection-dispersion equation finite element method Riemann-Liouville derivative
  • 相关文献

参考文献3

二级参考文献28

  • 1常福宣,吴吉春,薛禹群,戴水汉.多孔介质溶质运移问题中的分数弥散[J].水动力学研究与进展(A辑),2005,20(1):50-55. 被引量:6
  • 2李国敏.多孔介质水动力弥散尺度效应的分形特征.第一届全国分形理论与地质科学学术讨论会论文集[M].武汉:中国地质大学出版社,1992.56-59.
  • 3GIONA M. ROMAN H E. Fractional diffusion equation on fractals: one dimensional case and asymptotic behaviour[J]. J. Phys. Math. Gen.1992.25:2093-2105.
  • 4ROMAN H E, GIONA M. Fractional diffusion equation on fractals: three dimensional ease and scattering function[J]. J. Phys. Math. Gen., 1992,25, 2107-2117.
  • 5MEESHAERT M M. BENSON D A. BAUMER B.Multidimensional advection and frectional dispersion[J].Phys. Rev. E, 1998, 59(5):5026-5028.
  • 6BENSON D V, WHEATCRAFT SW. MEESHAERTM M. The fractional order governing equation of Levy motion[J]. Water Resour. Res. , 2000.36(6): 1413-1423.
  • 7MILLER K S, ROSS B. An introduction to the fractional calculus and fractional differential equations[M].John Wiley &Sons. Inc. , New York, 1993.
  • 8SAMKO S G, KILBSS A A, and M&ichev O I. Fractional Integrals and derivatives, Theory and Applications[M]. Gordon and Breach, Amsterdam, [Engl.transl, from the Russian edition, 1987], 1993.
  • 9GORENFLO R. MRACTIONAL F. Fractional calculus: Integral and differential equations of fractional order[M]. A. Corpinteri and F. Mainardi (Editors) :Fractal and Fractional Calculus in Continuum Mechanics, Springer, Wien and New York, 1997. 223-276.
  • 10GORENFLOR, MAINARDI F, MORETTI D, PAGNINI G, PARADISI P. Discrete random walk models for space-time fractional diffusion[J]. Chemical Physics,2002, 284:521-541.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部