摘要
The synthesized C-phycocyanins (C-PCs) doped silica biomaterials were characterized by the SEM and BET surface area analysis measurement. The morphology of C-PCs doped silica biomaterials indicates that the surface of the silica cluster is formed by a great number of silica particles with an average size of between 30 and 40 nm. Silica itself is a porous structure with the average pore diameter of 2.95 nm. Pores with their diameter less than 5 nm account for 84.07%. In addition, the C-PCs can be utilized as a fluorescent protein probe to monitor influence of the protein encapsulation and to study matrix and protein interaction and stability of protein in silica matrix. Application of protein encapsulation silica materials requires biomolecules to keep bioactivity and stability on potentially unfavorable industrial conditions. The C-PCs in solution or in silicate matrix irradiated by ultraviolet ray can result in photobleaching, whereas the protein in the silica is less affected. The measured photodamage rate constant of C-PCs in buffer solution is 25 times faster than that of C-PCs in silica matrix. However, the lifetime of C-PCs in silica matrix or phosphate buffer is unaffected. These studies suggest that entrapment of C-PCs into silica matrixes not only can maintain their biological activity but also noticeably improve their photostability.
The synthesized C-phycocyanins (C-PCs) doped silica biomaterials were characterized by the SEM and BET surface area analysis measurement. The morphology of C-PCs doped silica biomaterials indicates that the surface of the silica cluster is formed by a great number of silica particles with an average size of between 30 and 40 nm. Silica itself is a porous structure with the average pore diameter of 2.95 nm. Pores with their diameter less than 5 nm account for 84.07%. In addition, the C-PCs can be utilized as a fluorescent protein probe to monitor influence of the protein encapsulation and to study matrix and protein interaction and stability of protein in silica matrix. Application of protein encapsulation silica materials requires biomolecules to keep bioactivity and stability on potentially unfavorable industrial conditions. The C-PCs in solution or in silicate matrix irradiated by ultraviolet ray can result in photobleaching, whereas the protein in the silica is less affected. The measured photodamage rate constant of C-PCs in buffer solution is 25 times faster than that of C-PCs in silica matrix. However, the lifetime of C-PCs in silica matrix or phosphate buffer is unaffected. These studies suggest that entrapment of C-PCs into silica matrixes not only can maintain their biological activity but also noticeably improve their photostability.
基金
Funded by the National Natural Science Foundation of China (No. 20873005)
Beijing Natural Science Fundation (No.2083028)
the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
422 Funds from University of Science and Technology Beijing