摘要
The performance of LiNi/γ-Al2O3 catalysts modified by rare earth metal oxide (La2O3 or CeO2) packed on BCFNO membrane reactor was discussed for the partial oxidation of methane (POM) in coke oven gas (COG) at 875 ℃. The NiO/γ-Al2O3 catalysts with different amounts of La2O3 and CeO2 were prepared with the same preparation method and under the same condition in order to compare the reaction performance (oxygen permeation, CH4 conversion, H2 and CO selectivity) on the membrane reactor. The results show that the oxygen permeation flux increased significantly with LiNiREOx/γ-Al2O3 (RE = La or Ce) catalysts by adding the element of rare earth especially the Ce during the POM in COG. Such as, the Li15wt%CeO29wt%NiO/γ-Al2O3 catalyst with an oxygen permeation flux of 24.71 ml·cm^-2·min^-1 and a high CH4 conversion was obtained in 875 ℃. The resulted high oxygen permeation flux may be due to the added Ce that inhibited the strong interaction between Ni and Al2O3 to form the NiAl2O4 phase. In addition, the introduction of Ce leads up to an important property of storing and releasing oxygen.
The performance of LiNi/γ-Al2O3 catalysts modified by rare earth metal oxide (La2O3 or CeO2) packed on BCFNO membrane reactor was discussed for the partial oxidation of methane (POM) in coke oven gas (COG) at 875 ℃. The NiO/γ-Al2O3 catalysts with different amounts of La2O3 and CeO2 were prepared with the same preparation method and under the same condition in order to compare the reaction performance (oxygen permeation, CH4 conversion, H2 and CO selectivity) on the membrane reactor. The results show that the oxygen permeation flux increased significantly with LiNiREOx/γ-Al2O3 (RE = La or Ce) catalysts by adding the element of rare earth especially the Ce during the POM in COG. Such as, the Li15wt%CeO29wt%NiO/γ-Al2O3 catalyst with an oxygen permeation flux of 24.71 ml·cm^-2·min^-1 and a high CH4 conversion was obtained in 875 ℃. The resulted high oxygen permeation flux may be due to the added Ce that inhibited the strong interaction between Ni and Al2O3 to form the NiAl2O4 phase. In addition, the introduction of Ce leads up to an important property of storing and releasing oxygen.
基金
supported by the National High Technology Research and Development Program of China (No. 2006AA11A189)
Science and Technology Commission of Shanghai Municipality (No. 06DZ12212)
National Engineering Research Center of Advanced Steel Technology (NERCAST) (No. 050209)
the Innovation Fund for Graduate Studentof Shanghai University (SHUCX0910003)