期刊文献+

心肌组织工程支架材料:从研究到应用还有多远? 被引量:1

Cardiac tissue engineering scaffold material: How far is it from research to application
下载PDF
导出
摘要 目的:寻求在心肌组织工程中,能为培养的种子细胞提供可靠的仿生型心肌细胞外基质材料。方法:应用计算机检索CNKI和PubMed数据库中1996-01/2007-08关于组织工程支架材料的文章。结果:具有良好的生物相容性和机械性能的天然生物支架材料是心肌组织工程支架快速成形技术的首选材料。天然生物材料如胶原、壳聚糖等机械性能较差,可塑性不强,但生物相容性好,可用于心肌支架的快速成形。三维打印、激光烧结、立体印刷技术、选择性激光烧结快速成形技术制备出的支架均具有高的孔隙率,高的表面积体积比,孔与孔之间完全通透,宏观形状可控,孔隙率和孔径独立控制等优点。结论:采用离散/堆积成型原理,利用计算机和纳米高分子技术等高科技,结合传统心肌组织工程支架生物材料,对生物材料应用表面修饰或改性技术,有望为心肌组织工程提供较理想的支架材料。 OBJECTIVE: To seek the bionic material myocardial extracellular matrix in the myocardial tissue engineering for the cultured myocardial cells and to provide a reliable scaffold. METHODS: A computer-based online search of CNKI and PubMed database to search articles published between January 1996 and August 2007 on scaffold material of tissue engineering. RESULTS: Natural biological scaffold materials with good biocompatibility and mechanical properties are ideal choice in the cardiac tissue engineering rapid prototyping technology. Natural biological materials such as collagen, chitosan have poor mechanical properties and plasticity, but good biocompatibility, which can be used for rapid prototyping of cardiac stents. The scaffolds which are prepared by the technology such as three-dimensional printing, laser sintering, three-dimensional pressing, selective laser sintering rapid prototyping technology on have the advantages such as high porosity, high surface area volume ratio, completely transparent among the holes, controllable macro-shape, porosity, and independent control of aperture. CONCLUSION: Through the use of dispersion/accumulation forming principle, surface modification of traditional biological materials in cardiac tissue engineering using computers and other high-tech nano-polymer technology is expected to provide ideal myocardial scaffolds.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2009年第47期9334-9336,共3页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 山西省科技攻关项目资助(20080311061-2) 太原市科技发展项目资助(0904052)~~
  • 相关文献

参考文献27

  • 1Kofidis T, Akhyari P, Wachsmann B, et al. A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur J Cardiothorac Surg. 2002;22(2):238-243.
  • 2Akins RE, Boyce RA, Madonna ML,et al. Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng. 1999; 5(2):103-118.
  • 3Goldstein S, Clarke DR, Walsh SP, et al. Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft. Ann Thorac Surg. 2000;70(6): 1962-1969.
  • 4Papadaki M, Bursac N, Langer R,et al. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart Circ Physiol. 2001 ;280(1):H168-178.
  • 5Kadner A, Hoerstrup SP, Zund G, et al. A new source for cardiovascular tissue engineering: human bone marrow stromal cells. EurJ Cardiothorac Surg. 2002;21(6):1055-1060.
  • 6Polonchuk L, Elbel J, Eckert L,et al. Titanium dioxide ceramics control the differentiated phenotype of cardiac muscle cells in culture. Biomaterials. 2000;21(6):539-550.
  • 7Wojciak-Stothard B, Curtis A, Monaghan W, et al. Guidance and activation of murine macrophages by nanometric scale topography. Exp Cell Res.1 996;22.3(2):426-435.
  • 8Park JS, Akiyama Y, W innik FM, et al. Versatile synthesis of end-functionalized thermosensitive poly (2-isopropyl-2- oxazolines). Macromolecules. 2004;37:6786-6792.
  • 9Ryu JH, Kim IK, Cho SW, et al. Implantation of bone marrow mononuclear ceils using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials. 2005; 26(3):319-326.
  • 10Huang NF, Yu J, Sievers R,et al. Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 2005;11 (11-12):1860-1866.

二级参考文献29

  • 1Langer R. Drug delivery and targeting. Nature, 1998,392:5.
  • 2Gilding D K, Reed A M. Biodegradable polymers for use in surgery-polyglycolic/poly(lactic acid)homo-and copolymers : 1. Polymer, 1979,20 : 1459.
  • 3Hans M L, Lowman A M. Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 2002,6 : 319.
  • 4Siahaan,Teruyna J. Preparation and conformation of phyenylalance-containing RGD cyclopeptide [J]. Pept Protein Res,1994,44(5) :427.
  • 5Massia S P,Hubbell J A. An RGD spacing of 440 nm is sufficient for integrin-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol, 1991,114:1089.
  • 6Moursi A M,Globus P K,Demsky C H. Interaction between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Science,1997,110(10):2187.
  • 7Willian D, Fok F, Zutter M, et al. Identification of a tetrapeptide recognition sequence for α2β1 integrin in collagen. J Biol Chem, 1991,266(12) : 7363.
  • 8Garcia A J,Ducheyne P,Boettiger D. Effect of surface reaction stage on fibronectin-mediated adhesion of osteoblastlike cells to bioactive glass. J Biomed Mater Res, 1998,40(3):371.
  • 9Dee K C, Ardersen T T, Bizios R. Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res, 1998,40(3) :371.
  • 10Mizuno M, Shindo M, Kobayashi D, et al. Osteogenesis by bone marrow stromal cells maintained on type Ⅰ collagen matrix gels in vivo. Bone, 1997,20(2) : 101.

共引文献17

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部