摘要
Bifurcation control and the existence of chaos in a class of linear impulsive systems are discussed by means of both theoretical and numerical ways. Chaotic behaviour in the sense of Marotto's definition is rigorously proven. A linear impulsive controller, which does not result in any change in one period-1 solution of the original system, is proposed to control and anti-control chaos. The numerical results for chaotic attractor, route leading to chaos, chaos control, and chaos anti-control, which are illustrated with two examples, are in good agreement with the theoretical analysis.
Bifurcation control and the existence of chaos in a class of linear impulsive systems are discussed by means of both theoretical and numerical ways. Chaotic behaviour in the sense of Marotto's definition is rigorously proven. A linear impulsive controller, which does not result in any change in one period-1 solution of the original system, is proposed to control and anti-control chaos. The numerical results for chaotic attractor, route leading to chaos, chaos control, and chaos anti-control, which are illustrated with two examples, are in good agreement with the theoretical analysis.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos 10871074 and 10572011)
the Natural Science Foundation of Guangxi Province,China (Grant No 0832244)