期刊文献+

Van der Pol时滞弱耦合系统多尺度分析 被引量:3

Multiple Scale Analysis of weakly Coupled Van der Pol System with Time Delay
下载PDF
导出
摘要 对于非线性耦合项中带有时滞的van der Pol系统,采用多尺度法对该系统进行定性以及定量的分析。研究结果表明,对于van der Pol时滞耦合系统,时滞的存在影响了系统的稳定性,使系统的周期解发生了静态分岔和Hopf分岔。研究还发现,对于耦合强度较弱的情形,利用多尺度法对系统进行定量分析是合理可靠的。我们取不同的耦合强度作出了系统的时间历程图、相图和分岔图,分析了解析解与数值解之间产生误差的原因。本文所研究的系统来源于耦合的激光振荡器。 The method of multiple scale is used to obtain qualitative and quantitative analysis of nonlinear coupled van der Pol system with time delay. The research results indicate that the time delay has an effect on the stability of the motion,and the static bifurcation or the Hopf bifurcation is happened upon the periodic solutions of the system. It is also found reasonable and dependable by utilizing the method of multiple scale to make a quantitative analysis for weakly coupled system. Time history diagrams.phase diagrams and bifurcation diagrams of the system with different coupling level were made to analysis by reason caused the the error of approximate solutions and numerical solutions. The time delay coupled van der Pol system corresponds to the laser oscillators in engineering.
作者 孙秀婷 徐鉴
出处 《力学季刊》 CSCD 北大核心 2009年第4期542-547,共6页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(10532050 10625211) 上海市优秀学科带头人计划
关键词 时滞微分方程 耦合振子 分岔 同步 time delay differential equation coupled oscillator bifurcation phase lock
  • 相关文献

参考文献3

二级参考文献35

  • 1刘宇陆.具有记忆的污染物两维分散的描述[J].力学学报,1994,26(1):20-30. 被引量:1
  • 2徐鉴,裴利军.时滞系统动力学近期研究进展与展望[J].力学进展,2006,36(1):17-30. 被引量:65
  • 3[7]Ji JC,Leung AYT.Resonances of a non-linear s.d.o.f.system with two time-delays in linear feedback control.J of Sound and Vibration,2002,253(5):985~ 1000
  • 4[9]Xu J,Chung KW.Effects of time delayed position feedback on a van der Pol-Duffing oscillator.Physica D,2003,180:17~39
  • 5[10]Maccari A.Vibration control for primary resonance of van der Pol oscillator by a time delay state feedback.Int J Non-linear Mechanics,2003,38:128~ 131
  • 6[11]Nayfeh AH,Mook DT.Nonlinear Oscillations.New York:John Wiley & Sons,1978
  • 7[12]Tang JS,Qian CZ.The asymptotic solution of the strongly non-linear Klei-Gordon equation.Journal of Sound and Vibration,2003,268(5):1036
  • 8[13]Tang JS,Fu WB,Li KA.Bifurcation of a parainetrically exlital oscillator with strong nonlinearlity.Chinese Physics,2002,11 (10):1004
  • 9[14]Tang JS.A method for parameter identification of strongly non-linear system.Journal of Sound and Vibration,2000,232 (5):993
  • 10[1]Just W.Mechanism of time-delayed feedback control.Physical Review Letters,1997,78(2):203~206

共引文献15

同被引文献31

  • 1唐驾时,萧寒.耦合的van der Pol振子的极限环幅值控制[J].物理学报,2007,56(1):101-105. 被引量:7
  • 2LIN J, Qu L S. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis[ J]. Journal of Sound and Vibration, 2000, 234(1) : 135 -148.
  • 3HARTE J M, ELLIOTTS J, RICE H J. A comparison of various nonlinear models of cochlear compression [ J ]. The Journal of the Acoustical Soci- ety of America, 2005, 117(6) : 3777 -3786.
  • 4JlLICHER F. Mechanical oscillations at the cellular scale [ J ]. Comptes Rendus de l' Acadrmie des Sciences-Series IV-Physics-Astrophysics, 2001,2(6) : 849 -860.
  • 5GOPFERT M C, ROBERT D. Motion generation by Drosophila meehanosensory neurons [ J ]. Proceedings of the National Academy of Sciences, 2003, 100(9): 5514-5519.
  • 6WIESENFELD K, BULSARA A R, INCHIOSA M E. Oscillatory dynamics of a nonlinear amplifier in the high-gain regime: exploiting a global connection [ J ]. Physical Review B, 2000, 62 (14) : R9232 - R9235.
  • 7MCCULLEN N J, MULLIN T, GOLUBITSKY M. Sensitive signal detection using a feed-forward oscillator network[ J]. Physical Review Letters, 2007, 98(25) : 254101.
  • 8STOOP R, KERN A, GOPFERT M C, et al. A generalization of the van-der-Pol oscillator underlies active signal amplification in Drosophila heating[ J]. European Biophysics Journal, 2006, 35 (6) : 511 - 516.
  • 9MURAKAIMI K. Bifurcated periodic solutions for delayed van der Pol equation[ J]. Neural Parallel and Scientific Computations, 1999, 7 (1) : 1 -16.
  • 10LIAO X F. Hopf and resonant codimension two bifurcation in van der Pol equation with two time delays [ J ]. Chaos, Solitons & Fractals, 2005, 23(3) : 857 -871.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部