期刊文献+

糖酵解模型的动力学分析 被引量:2

Dynamical Analysis of the Glucose Zymolysis Model
下载PDF
导出
摘要 主要研究了糖酵解模型由产物ADP流出速率常数2σ引起的Hopf分岔,探讨了糖酵解过程中广泛存在的振荡现象产生的原因.首先研究了平衡点的个数,然后利用Lyapunov稳定性定理研究了平衡点的稳定性,最后利用Hopf分岔理论研究了其Hopf分岔.证明了该Hopf分岔是已发现的糖酵解过程中广泛存在的振荡现象(即周期解)产生的原因,即参数2σ在其临界值2σc处模型会发生超临界Hopf分岔,分岔出稳定的周期解.并利用软件WinPP进行了数值模拟,结果与理论分析相吻合. The Hopf bifurcation is mainly studied,which is induced by the leaving rate,σ2,of the ADP in the glucose zymolysis model.And the cause of the extensively existing oscillation phenomena in the process of the glucose zymolysis is also discussed.At first,the number of the equilibria is considered.Then,their stability is established by the Lyapunov stability theory.At last,the Hopf bifurcation of the equilibrium induced by the parameter σ2 is obtained by the Hopf bifurcation theory.The result proves that this Hopf bifurcation is the cause of the extensively existing oscillation phenomena (i. e. , periodic solution) in the process of the glucose zymolysis, i. e. , the glucose zymolysis model undergoes the supercritical Hopf bifurcation at the critical value σ2c of the parameter σ2 and a stable periodic executed by employing the software WinPP alytical ones. solution bifurcates. And the numerical and the numerical results agree very well simulation is with the analytical ones.
作者 裴利军 陈伟
机构地区 郑州大学数学系
出处 《郑州大学学报(理学版)》 CAS 北大核心 2009年第4期1-5,10,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号10702065
关键词 糖酵解 稳定性 HOPF分岔 glucose zymolysis stability Hopf bifurcation
  • 相关文献

参考文献11

  • 1刘秉正.生命科学中的混沌[M].长春:东北师范大学出版社,1999.141-144.
  • 2Goldbeter A, Lefever R. Dissipative structures for an allosteric model[J]. Biophysical Journal, 1972,12(10) : 1302-1315.
  • 3田春红.一类具有反馈控制参数的时变分岔[J].郑州大学学报(理学版),2007,39(3):36-39. 被引量:3
  • 4裴利军,王永刚,范烨.神经元Chay模型的动力学分析[J].郑州大学学报(理学版),2009,41(2):7-12. 被引量:9
  • 5方锦清,陈关荣,罗晓曙,洪奕光.一种统一的状态反馈方法控制HOPF分岔[J].广西师范大学学报(自然科学版),2000,18(1):1-8. 被引量:2
  • 6秦元勋,王慕秋,王联.运动稳定性理论及其应用[M].北京:科学出版社,1994.
  • 7张芷芬.微分方程定性理论[M].北京:科学出版社,1995.
  • 8马知恩,周义仓.常微分方程的定性与稳定性方法[M].3版.北京:科学出版社,2005.
  • 9Kuznetsov Y A. Elements of Applied Bifurcation Theory[M]. New York: Springer-Verlag, 1997.
  • 10Hassard B, Kazarinoff N, Wan Y. Theory and Application of Hopf Bifurcation[M]. Cambridge: Cambridge University Press, 1981.

二级参考文献37

  • 1[1] Abed E H, Fu J H. Local feedback stabilization and bifurcation control[J] .Sys Contr Lett, Part Ⅰ:Hopf bifurcation, 1986,7:11~ 17,PartⅡ:Stationary bifurcation,1987,8:467~473
  • 2[2]Abed E H,Wang H O,Chen R C.Stabilization of period doubling bifurcations and implications for control of chaos[J] .Physica D, 1994,70:154~164
  • 3[3]Abed E H. Wang H O,Tesi A. Control of bifureation and chaos[M].The Control Handbook, New York: CRC Press, Baco Raton,FL, 1995.951~966
  • 4[4]Arrowsmith D K,Place C M.An introduction to dynamical systems[M] .New York:Cambridge Univ Press,1990.213~262
  • 5[5]Baillieul J, Dahlgren S, Lehman B. Nonlinear control design for systems with bifurcations with applications to stabilization and control of compressors[M].Tampa FL:Proc of IEEE Conf on Decis Contr, 1995.3 063~3 067
  • 6[6]Calandrini G,Paolini E,Moiola J L,Chen G.Controlling limit cyces and bifurcations[M] .New York:CRC Press,1999.205~232
  • 7[7]Gu G,Sparks A.Bifurcation stabilization with applications in jet engine control[M].New York:CRC Press, 1999.347~390
  • 8[8]Wang H O,Chen D S. Control and anticontrol of bifurcations with application to active control of rayleigh-benard convection[M]. New York:CRC Press, 1999.299~324
  • 9[9]Brandt M E, Chen G. Bifurcation control of two nonlinear models of cardiac activity[J]. IEEE Trans on Cire Sys-I , 1997,44:1 031 ~1 034
  • 10[10]Bemardo M di,Chen G.Controlling bifurcations in nonsmooth dynamical systems[M].New York;CRC Press,1999.391~416

共引文献10

同被引文献15

  • 1田春红.一类具有反馈控制参数的时变分岔[J].郑州大学学报(理学版),2007,39(3):36-39. 被引量:3
  • 2裴利军,王永刚,范烨.神经元Chay模型的动力学分析[J].郑州大学学报(理学版),2009,41(2):7-12. 被引量:9
  • 3徐鉴,裴利军.时滞系统动力学近期研究进展与展望[J].力学进展,2006,36(1):17-30. 被引量:65
  • 4Engelborghs K, Luzyanina T, Samaey G. DDE-BIFTOOL v. 2.00: a Matlab Package for Bifurcation Analysis of Delay Differential Equations, Technical Report TW-330[CP]. Leuven: Department of Computer Science, 2001.
  • 5Kuznetsov Y A. Elements of Applied Bifurcation Theory[M]. 2nd ed. Berlin.. Springer-Verlag, 1997:57-63.
  • 6Hassard B D,Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation[M]. Cambridge:Cambridge University Press, 1981 : 14-24.
  • 7Kuznetsov Y A. Elements of Applied Bifurcation Theory[M]. (2^nd) New York-Berlin -Heideberg Springer-Verlag, 1997.
  • 8Hassard B, Kazarinoff N, Wan Y. Theory and application of Hopf bifurcation[M]. Cambridge Cam-bridge University Press, 1981.
  • 9李坤华.时滞耦合Lorenz-Rossler系统的Hopf分岔和广义同步[D].郑州大学硕士论文,2010:2-3.
  • 10Floyd S, Jacobson V. Random Early Detection gateways in congestion avoidance[J]. IEEE Trans- actions on Networking 1993, 1(3): 397-413 .

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部