期刊文献+

一个新的分数阶混沌系统 被引量:2

A New Fractional-order Chaotic System
下载PDF
导出
摘要 构造了一个新的分数阶混沌系统,该系统含有5个参数,2个非线性乘积项,通过理论推导、数值仿真、Lya-punov指数谱分析了系统的动力学性质,验证了系统的混沌特性,描述了该系统的整数阶和分数阶混沌状态,发现新系统出现混沌的最低阶数仅为0.3. A new system with integer and fractional order is introduced.The new system contains two quadratic cross-product terms and five system parameters.The basic dynamic properties of the new system are investigated via theoretical analysis,numerical simulation,and Lyapunov exponent spectrum.And it is found that the lowest order producing chaos is 0.3.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2009年第4期45-48,共4页 Journal of Zhengzhou University:Natural Science Edition
关键词 分数阶混沌 新混沌系统 LYAPUNOV指数谱 fractional calculus new chaotic system Lyapunov exponents spectrum
  • 相关文献

参考文献7

  • 1Lorenz E N. Deterministic nonperiodic flow[J]. Atoms Sci, 1963,20 (2) : 130-141.
  • 2Chen G R, Ueta T. Yet another chaotic attractor [J]. Int J of Bifurcation and chaos, 1999, 9(7):1465-1466.
  • 3Lu J H, Chen G R. A new chaotic attractor coined[J]. Int J of Bifurcation and chaos, 2002, 12(3):659-661.
  • 4Lu J H,Chen G R, Zhang S C. Dynamical analysis of a new chaotic attractor coined[J]. Int J of Bifurcation and Chaos, 2002,12 (5): 1001-1015.
  • 5马军,唐国宁,蒲忠胜,刘延君.一类复杂动力系统的参数辨析[J].郑州大学学报(理学版),2004,36(4):28-31. 被引量:7
  • 6Chard A, Sun H H,Tsao Y Y. Fractal system as represented by singularity function [J]. IEEE Trans Automatic Control ,1992, 37(9): 1465-1470.
  • 7Ahmad W M, Sprott J C. Chaos in fractional-order autonomous nonlinear system[J]. Chaos,Solitons and Fractals, 2003, 16:339-351.

二级参考文献4

  • 1Rossler O E.An equation for hyperchaos . Phys Lett,1979,A71(1):155.
  • 2Boccaletti S, Grebogi C, Lai Y C, et al. The control of chaos: theory and applications. Physics Report,2000, (329): 103-197.
  • 3Tamasevicius A, Namajunas A, Cenys A.Simple 4D chaotic oscillator. Electronics Letters, 1996,32:957-958.
  • 4Ylee T, Louis J. Chaos in real system .Simulation,1995,64(3);176-183.

共引文献6

同被引文献21

  • 1郝加波,周平.基于反馈系统和响应系统的混沌同步[J].四川师范大学学报(自然科学版),2005,28(5):611-614. 被引量:7
  • 2王玉芳,杨峰.一个非自治混沌电路的同步实现及其保密通信应用[J].山东师范大学学报(自然科学版),2007,22(1):25-28. 被引量:5
  • 3PECERA L M,CARROLL T L.Synchronization in chaotic systems[J].Phys Rev Lett,1990,64:821-824.
  • 4WANG Qing-yun,LU Qi-shao.Time delay enhance synchronization and regularization in two coupled chaotic ML neurons[J].Chin Phys Lett,2005,22:543-546.
  • 5KIM L N,RIM S,KYE W H.Anti-synchronization of chaotic oscillators[J].Physics Letters A,2003,320:39-46.
  • 6GROSU I,RANERJEE R J,ROY P K.Design of coupling for synchronization of chaotic oscillators[J].Phys Rev E,2009,80:016212.
  • 7CHEN J H,CHEN H K,LIN Y K,et al.Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems[J].Chaos,Solitions and Fractal,2009,39:707-716.
  • 8LI Rui-hong,CHEN Wei-sheng,LI Shuang.A simple method to simultaneously acchieve synchronization and antisynchronization in chaotic systems[J].Chin Phy B,2010,19:010508.
  • 9HINDMARSH J L,ROSE R M.A model of neural bursting using three coupled first order differential equations[J].Pro R Soc London B,1984,221:87-102.
  • 10王兴元,王明军.三种方法实现超混沌Chen系统的反同步[J].物理学报,2007,56(12):6843-6850. 被引量:28

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部