期刊文献+

基于Hilbert-Huang变换和神经网络的带串补高压输电线路故障测距 被引量:11

Fault Location for High Voltage Transmission Lines With the Series Compensation Capacitor Based on Hilbert-Huang Transform and Neural Network
下载PDF
导出
摘要 提出了一种针对带串补高压输电线路的分层结构神经网络模型故障测距新算法。第1层为粗略判断故障位置的神经网络模型,利用一种新的信号处理方法Hilbert-Huang变换获取能量故障特征作为第1层神经网络的输入,判断故障发生在电容前或后;第2层为精确确定故障位置的神经网络模型,通过对神经网络的离线训练和对单端故障测距结果的在线补偿,最终得到精确的故障距离。该算法考虑了过渡电阻和分布电容的影响,克服了传统故障测距算法由于忽略分布电容导致在高阻接地故障时故障定位不准确的缺点。 A new fault location algorithm based on artificial neural network (ANN) model with layered structure for high voltage transmission lines with series compensation capacitors is proposed. The first layer is a neural network model that roughly judge fault position where the Hilbert-Huang transform is used for signal processing to obtain energy fault feature that is taken as the input of the first layer of ANN to recognize whether the fault occurred ahead or behind the compensator; the accurate fault location is carried out by the second layer of ANN neural network, by means of the off-line training of ANN and on-line compensation for the single-end fault location result the accurate fault position is implemented. In the proposed algorithm the influences of transition resistance and distributed capacity are taken into account, therefore the defects of traditional fault location algorithms, i.e., the unallowable location error of high-resistance earth-fault and the inaccurate fault location due to the neglect of distributed capacitance.
出处 《电网技术》 EI CSCD 北大核心 2009年第20期142-146,共5页 Power System Technology
基金 国家自然科学基金资助项目(60971077) 教育部博士点新教师基金资助项目(20070425518)~~
关键词 神经网络 故障测距 HILBERT-HUANG变换 串联补偿电容 ANN fault location : Hilbert-Huangtransform series capacitor compensation
  • 相关文献

参考文献14

二级参考文献92

共引文献294

同被引文献101

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部