期刊文献+

基于中间件技术的数据挖掘企业应用平台的研究与实现

Data Mining Platform for Enterprise Application Based on Middleware
下载PDF
导出
摘要 数据挖掘具有计算密集型和存储密集型的特点,中间件技术能够较好的解决这两个问题.研究并实现了典型的分类、聚类、关联规则算法及其增量算法的中间件和数据挖掘企业应用平台,能够处理100 Mbit量级的数据,适应的数据增量在10~100 Mbit量级,并且能够根据不同的挖掘任务实现相应的模式展现与可视化.平台上对某网球训练基地运动员体能训练数据集执行增量聚类挖掘任务,结果表明该平台能较好地满足可靠性、扩展性、易用性等业务需要. Data mining application is dense in computing and dataset storage and middle-ware can easily resolve these problems.The system realizes some classic arithmetic middleware about classification, clustering, association rules and relevant incremental arithmetic middle- ware, moreover the system realizes a data mining platform, which can deal with large dataset of 100 Mbit and incremental dataset that is between 10 and 100 Mbit. The platform can imple- ment the visualization of the results of some data mining tasks. The platform has executed an incremental clustering task using the athlete physical training dataset of a tennis training base, and the data mining result has showed a good reliability, expansibility and facility to be avail-able for the business demand.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期15-20,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 天津市科技攻关计划重点科技攻关专项项目(05YFGZGX24000)
关键词 中间件 增量算法 挖掘任务 可视化 middleware incremental arithmetic data mining task visualization
  • 相关文献

参考文献8

  • 1Mehmed Kantardzic.数据挖掘-概念、模型、方法和算法[M].北京:清华大学出版社,2003.
  • 2Britton Chris. IT Architectures and Middleware[M].北京:人民邮电出版社,2003.
  • 3Ian H Witten, Eibe Frank. Data Mining.. Practical Machine Learning Tools and Techniques with Java Implementations[M]. San Francisco: Morgan Kaufmann Publishers, 1999.
  • 4Robert Nisbet, John Elder I V, Gary Miner. Handbook of Statistical Analysis and Data Mining Applications[M]. Salt Lake City : Academic Press, 2009.
  • 5Kumar A. New techniques for data reduction in a database system for knowledge discovery applications[J]. Journal of Intelligent Information Systems, 1998, 10(1): 31-48.
  • 6TOM Soukup,IAN Davidson.可视化数据挖掘-数据可视化和数据挖掘的技术与工具[M].朱建秋,等,译.北京:电子工业出版社,2004:59-115.
  • 7Utgoff P E. Incremental induction of decision tree[J]. Machine Learning, 1989, 4(2): 161-186.
  • 8Mannila H, Toivonen H, Verkamo A I. Discovery of frequent episodes in event sequences[J]. Data Mining and Knowledge Discovery, 1997, 1(3) : 259- 289.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部