摘要
在n+1维静态AdS时空M中,利用双扭结构建立了一些积分公式,并利用这些积分公式证得:如果M的Ricci曲率具有非负离差,那么以n-1维圆球面为边界的常平均曲率类空超曲面必为测地圆盘(h=0)或全脐盖(h≠0).作为推论,对于离差为零的Einstein静态AdS时空,结论也真.
The author constructs some integral formulas for space-like hypersurfaces in the static AdS space-times, and uses them to show that only the geodesic n-disc and the umbilical caps in the static AdS space-times, with non-negative deviation, are the space-like hypersurfaces with constant mean curvatures which are bounded by an (n-1)-round sphere.As a corollary, it holds for static AdS space-times with Einstein metric.
出处
《数学年刊(A辑)》
CSCD
北大核心
2009年第6期829-838,共10页
Chinese Annals of Mathematics
基金
上海财经大学211工程三期重点学科建设基金资助的项目