期刊文献+

高强度PAMPS-PAAm互穿网络凝胶及其溶胀性能 被引量:6

Swelling Degrees Property of High Strength PAMPS-PAAm Interpenetrating Polymer Network Hydrogel
下载PDF
导出
摘要 通过考察不同单体浓度或离子强度下凝胶的力学性能和溶胀特性,对聚2-丙烯酰胺-2-甲基丙磺酸(PAMPS)与聚丙烯酰胺(PAAm)形成的互穿网络凝胶的高强度性能和作用机理进行了研究。结果表明:PAMPS-PAAm互穿网络凝胶的力学强度对c(AMPS)存在一个最佳值(1 mol/L),且随c(AAM)的增大而显著增大(0.5-4 mol/L)。当c(AMPS)=1 mol/L、c(AAM)=4 mol/L时,互穿网络凝胶的最大抗压强度达6.46 MPa;改变凝胶体系内水的离子强度,PAMPS-PAAm凝胶在0.25 mol/kg离子强度时的抗压强度与纯水状态下相比增加了29%。 The properties and mechanism of high-strength interpenetrating polymer network hydrogel, which was synthesized by 2-acrylamide-2-methylpropane-sulfonic acid and acrylamide, were studied according to their mechanical and swelling experiments under different monomer concentrations and ionic strength. Results show that the strength of PAMPS-PAAm interpenetrating polymer network hydrogel increases with the increasing of AAm concentration (0.5--4 mol/L),while the AMPS concentration has a optimal value (1 mol/L) and the highest compressive strength of the interpenetrating polymer network hydrogel is up to 6. 46 MPa with 1 mol/L AMPS and 4 mol/L AAm. The compressive strength of PAMPS-PAAm hydrogel increases by 29 % when increasing the ionic strength of the water in hydrogels to 0.25 mol/kg compared to deionized water.
出处 《功能高分子学报》 CAS CSCD 北大核心 2009年第4期321-325,共5页 Journal of Functional Polymers
基金 浙江省自然科学基金(Y406291) 教育部留学人员科技活动择优资助项目(教外司留[2007]24号) 中日科技合作项目
关键词 PAMPS-PAAm水凝胶 高强度 互穿网络 离子强度 PAMPS-PAAm hydrogel high strength interpenetrating polymer network ionic strength
  • 相关文献

参考文献10

  • 1Schmedlen K H, Masters K S, West J L. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering[J]. Biomaterials, 2002, 23(22): 4325-4332.
  • 2Ulijn R V, Bibi N, Jayawarna V, et al. Bioresponsive hydrogels[J]. Materials Today, 2007, 10(4): 40-48.
  • 3Berger J, Reist M, Mayer J M, et al. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications[J]. European Journal of Pharmaceutics And Biopharmaceutics, 2004, 57(1): 35-52.
  • 4Sakata S, Uchida K, Kaetsu I, et al. Programming control of intelligent drug releases in response to single and binary environmental stimulation signals using sensor and electroresponsive hydrogel[J]. Radiation Physics and Chemistry, 2007, 76(4): 733-737.
  • 5Kim S J, Park S J, Kim S I. Properties of smart hydrogels composed of polyacrylic acid/poly(vinyl sulfonic acid) responsive to external stimuli[J]. Smart Materials and Structures, 2004, 13(2): 317-322.
  • 6Myung D, Waters D, Wiseman M, et al. Progress in the development of interpenetrating polymer network hydrogels [J]. Polymers for Advanced Technologies, 2008, 19(6): 647-657.
  • 7Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14) : 1155-1158.
  • 8Tsukeshiba H, Huang Mei, Na Y, et al. Effect of polymer entanglement on the toughening of double network hydrogels [J]. Journal Physics and Chemistry B, 2005, 109: 16304-16309.
  • 9Kang S K, Jhon M S. The conformational stability of tactic poly(2-hydroxyethyl methacrylate) in aqueous salt-solutions [J]. Journal of Polymer Science:Part A. Polymer Chemistry, 1993, 31(5): 1243-1251.
  • 10Quinn F X, Mcbrierty V J, Wilson A C, et al. Water in hydrogels: 3. Poly(hydroxyethyl methaerylate) saline solution systems[J]. Macrornolecules, 1990, 23(21): 4576-4581.

同被引文献41

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部