期刊文献+

非线性支持向量机在油气预测中的应用 被引量:1

NONLINEAR SUPPORT VECTOR MACHINE AND ITS APPLICATION TO HYDROCARBON PREDICTION IN OIL AND GAS EXPLORATION
下载PDF
导出
摘要 油气预测的传统方法通常是基于经验风险最小化准则,但在有限样本情况下,预测效果并不理想。研究引入基于结构化风险最小化准则的非线性支持向量机方法,通过对推广误差界的最小化达到最大的泛化能力和全局最优,对于小样本数据,该方法具有可靠的预测能力。在对四川观音场构造面新统上部碳酸盐岩储层数据处理中,通过实例试算,结果表明该方法有效可靠,预测精度高,与已知结果吻合较好。 The methods based on empirical risk minimization are often applied to hydrocarbon discrimination in oil and gas exploration. But the predictive validities of these methods are not perfect with small sample data. This paper introduces a nonlinear support vector machine (SVM) based on structural risk minimization. It obtains global optimization other than local one and with a better generalization. The nonlinear SVM is with robust predictive performance, especially in small samples. Experimental results in small data show that the nonlinear SVM is robust and may obtain higher recognition rates. This method is effective in hydrocarbon detection or discrimination in reservoir prediction of carbonate rocks.
出处 《矿物岩石》 CAS CSCD 北大核心 2009年第4期111-114,共4页 Mineralogy and Petrology
基金 国家863高技术研究发展计划资助项目(编号:2006AA09A102-12)
关键词 油气预测 储层参数预测 支持向量机 核函数 oil and gas prediction reservoir parameter discrimination support vector machine kernel function
  • 相关文献

参考文献8

二级参考文献17

  • 1蔡煜东,宫家文,甘骏人,姚林声.应用人工神经网络方法预测油气[J].石油地球物理勘探,1993,28(5):634-638. 被引量:14
  • 2边肇祺.模式识别[M].北京:清华大学出版社,1987.133-148.
  • 3张学工.统计学习理论的本质(第二版)[M].清华大学出版社,2000..
  • 4VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 5Vapnik V N. The Nature of statistical learning theory [M]. NewYork: Springer-Verlag,2000. 193~245
  • 6Iqbal M. Numerical solutions of linear ill-posed problems[J]. Integral Transforms & Special Functions,2005,16(1): 29~35
  • 7Phillips D Z. A technique for numerical solution of certain integral equation of the first kind [J]. J Assoc Comput Math, 1962,9(1): 84~96
  • 8Ivanov V V. On linear problems which are not wellposed[J]. Soviet Math Docl, 1962,3(4): 981~983
  • 9许建华,蔡瑞.有监督SOM神经网络在油气预测中的应用[J].石油物探,1998,37(1):71-76. 被引量:9
  • 10卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41

共引文献2386

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部