期刊文献+

基于多元线性回归及支持向量机回归分析对含苯基的羧酸类化合物pKa的预测(英文) 被引量:3

Prediction of pKa values of aromatic carboxylic acids based on multilinear regression analysis and support vector machine regression analysis
原文传递
导出
摘要 本文建立了2个180个含苯基的羧酸类化合物酸碱解离常数(pKa)的定量预测模型。这些化合物分子量在122.12到288.34的范围内,包含H,C,N,O,S,F,Cl,Br及I等元素.使用Cerius^2程序计算236个分子描述符来表述这些化合物,并使用统计学方法从中选择了12个描述符.分别使用多元线性回归分析(MLR)及支持向量机回归(SVM)结合10重交互检验方法来预测pKa数值.多元线性回归模型对pKa的预测结果相关系数为0.90,标准偏差为0.32;支持向量机模型结果较好,相关系数为0.91,标准偏差为0.31. Two quantitative models for the prediction of the pKa values of 180 aromatic carboxylic acids were developed. These compounds contain elements such as H, C, N, O, S, F, CI, Br, and I with the molecular weight in the range of 122.12 to 288.34. The compounds were represented by 236 molecular descriptors calculated by using the CeriusZprogram. Twelve descriptors were selected by using the statistical methods. The pKa values were predicted by the Multilinear Regression (MLR) analysis and the Support Vector Machine (SVM) Regression in combination with 10-fold cross validation method. The model based on MLR analysis has a correlation coefficient of 0.90 for the predicted result of pKa, and the standard deviation of 0.32 pKa units, the model based on SVM regression has better result with a correlation coefficient of 0.91, and the standard deviation of 0.31 pKa units.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2009年第12期1559-1562,共4页 Computers and Applied Chemistry
基金 supported bythe National Natural Science Foundation of China(20605003) National High Tech Project(2006AA02Z337) SRF for ROCS,and the"Special Funding for the Talent Enrollment"of Beijing University of Chemical Technology~~
关键词 酸碱解离常数 含苯基羧酸类化合物 多元线性回归 支持向量机 定量构效关系 pKa values, aromatic carboxylic acids, multilinear regression, support vector machine, quantitative structure activity relationships (QSAR)
  • 引文网络
  • 相关文献

参考文献33

  • 1Ishihama Y, Nakamura M, Miwa T, Kajima T and Asakawa N. A rapid method for pKa determination of drugs using pressure-assisted capillary electrophoresis with photodiode array detection in drug discovery. J Pharm Sci, 2002, 91:933-942.
  • 2Chaudry U A and Popelier P L A. Estimation of pKa using quantum topological molecular similarity descriptors: application to carboxylic acids, anilines and phenols. J Org Chem, 2004, 69:233-241.
  • 3Tehan B G, Lloyd E J, Wong M-G, Pitt W R, Montana J G, Manallack D T and Gancia E. Estimation of pKa using semicmpirical molecular orbital methods. Part 1: application to phenols and carboxylic acids. Quant Struct -Act Relat, 2002, 21:457-472.
  • 4Tehan B G, Lloyd E J, Wong M G, Pitt W R, Gancia E and Manallack D T. Estimation of pKa using semiempirical molecular orbital methods. Part 2: application to amines, anilines and various nitrogen containing heterocyelic compounds. Quant Struct-Act Relat, 2002, 21:473-485.
  • 5Parthasarathi R, Padmanabhan J, Elango M, Chitra K, Subramanian V and Chattaraj P K. pKa prediction using group philicity. J Phys Chem, A 2006, 110:6540-6544.
  • 6Xing L and Glen R C. Novel methods for the predictions of log P, pKa, and log D. J Chem Inf Comput Sci, 2002, 42:796-805.
  • 7Xing L, Glen R C and Clark R D. Predicting pKa by molecular free structured fingerprints and PLS. J Chem Irff Comput Sci, 2003, 43:870-879.
  • 8Dixon S L and Juts P C. Estimation of pKa for organic oxyacids using calculated atomic charges. J Comput Chem, 1993, 14:1460-1467.
  • 9Zhang J, Kleinoder T and Gasteiger J. Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors. J Chem Inf Model, 2006, 46:2256-2266.
  • 10Jells S, Ertl P and Seizer P. Estimation ofpKa for druglike compounds using semiempirical and information-based descriptors. J Chem Inf Model, 2007, 47:450-459.

同被引文献27

  • 1祁正兴.用从头算量化参数预测吡啶类化合物的PKa值[J].青海师专学报,2006,26(5):77-80. 被引量:5
  • 2杨伟华,冯长君.羧酸类化合物p Ka的定量构效关系[J].吉首大学学报(自然科学版),2006,27(4):84-89. 被引量:7
  • 3陈虹,丁俊杰,丁晓琴,陈冀胜,樊启平.从头计算研究水溶液中有机化合物的pKa值[J].计算机与应用化学,2007,24(5):580-582. 被引量:11
  • 4Hilal S H, Karickhoff S W, Carreira L A. A rigorous test for SPARCs chemical reactivity models: estimation of more than 4300 ionization pKas [J]. Quant Struct-Act Relat, 1995, 14: 348-355.
  • 5Xing L, Glen R C. Novel methods for the predictions of logP, pKa and logD [J]. Chem Inf Comput Sci, 2002, 42:796-805.
  • 6Dixon S L, Jurs P C. Estimation of pKa for organic oxyacids using calculated atomic charges[J]. Comput Chem, 1993, 14: 1460-1467.
  • 7http://www.schrodinger. com (accessed Jun 2010).
  • 8http ://chemsilico. com/CS_ prpKa/PKAhome. html ( accessed Jun 2010).
  • 9http://www.acdlabs. com/products/phys _chem _ lab/pka/ batch. html (accessed Jun 2010).
  • 10Adam C L, Gordon M C. Predicting pKa [J]. Chem Inf Mod el, (in press).

引证文献3

二级引证文献1

;
使用帮助 返回顶部