期刊文献+

一个新的甲醇氧化简化化学动力学机理 被引量:6

A New Reduced Chemical Kinetic Mechanism for Methanol Oxidation
下载PDF
导出
摘要 基于甲醇氧化反应的主要反应历程分析,构建了一个包含17种组分和40个基元反应的甲醇简化化学动力学机理.通过与激波管、流反应器、稳态反应器、层流火焰速度和火焰结构实验数据的比较表明,该机理在温度为823~2180K、压力为0.005—2.0MPa、当量比为0.2~2.6范围内能够准确描述甲醇氧化历程.用该机理计算所得的甲醇层流火焰速度和着火滞燃期与实验结果吻合得很好,对预混层流火焰模型中燃烧中问产物CH2O、CO体积分数的计算结果相当准确.与其他简化机理相比,该机理适用范围更广;与全面的详细机理相比,该机理更适合与CFD多维模型耦合. Based on the analyses of main reaction path of methanol oxidation, a new reduced chemical kinetic mechanism for methanol oxidation including 17 species and 40 reactions was developed. Experimental data from shock-tube, flow-reactor, static-reactor, laminar-flame speed and flame structure show that, when temperature is 823--2 180 K, pressure is 0. 005--2.0 MPa, and equiralenee ratio is 0. 2--2. 6, this mechanism can predict methanol oxidation process quite well. The premix laminar flame speed and ignition delay time computed by this mechanism show agreement with the experimental data. Furthermore, the products in the premixed laminar flames such as CH2 O, CO, can also be predicted very well. Compared with other reduced mechanisms, this mechanism is valid within a wider flame range, and compared with comprehensive mechanisms, this mechanism is more suitable to couple with the multidimensional CFD model.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2009年第6期557-564,共8页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(50706058) 汽车零部件制造及检测技术教育部重点实验室开放课题资助项目(2009KLMT09)
关键词 甲醇 简化机理 化学动力学 层流火焰 methanol reduced mechanism chemical kinetic laminar flame
  • 相关文献

参考文献19

  • 1Held T J, Dryer F L. A comprehensive mechanism for methanol oxidation[ J]. International Journal of Chemical Kinetics, 1998, 30(11): 805-830.
  • 2Bowman C T. A shock-tube investigation of thehigh-temperature oxidation of methanol [ J ]. Combustion and Flame, 1975, 25: 343-354.
  • 3Aronowitz D, Santoro R J, Dryer F L, et al. Kinetics of the oxidation of methanol: Experimental results, semi-global modeling, and mechanistic concepts [ C ]//Seventeenth Symposium ( International ) on Combustion. Leeds, England : The Combustion Institue, 1979, 17: 633-644.
  • 4Westbrook C K, Dryer F L. A comprehensive mechanism for methanol oxidation [ J ]. Combustion Science and Technology. 1979, 20: 125-140.
  • 5Tsuboi Takao, Hashimoto Kazunobu. Shock tube study on homogeneous thermal oxidation of methanol[ J]. Combustion and Flame,1981, 42: 61-67.
  • 6Natarajan K, Bhaskaran K A. An experimental and analytical study of methanol ignition behind shock waves [ J ]. Combustion and Flame,1981, 43 : 35-49.
  • 7Yano T, Ito K. Behavior of methanol and formaldehyde in burned gas from methanol combustion [ J ]. The Japan Society of Mechanical Engineers, 1983, 26: 94-101.
  • 8Tsang W. Chemical kinetic data base for combustion chemistry ( Ⅱ ) : Methanol [ J ]. Journal of Physical and Chemical Reference Data, 1987, 15: 471-620.
  • 9Norton T S, Dryer F L. Some new observations on methanol oxidation chemistry [ J ]. Combustion Science and Technology, 1989, 63(1) : 107-129.
  • 10Egolfopoulos F N, Du D X, Law C K. A comprehensive study of methanol kinetics in freely-propagating and burner: Stabilized flames, flow and static reactors, and shock tubes [J]. Combustion Science and Technology, 1992, 83 ( 1 ) : 33 -75.

同被引文献35

  • 1张保良.车用替代燃料及发展研究[J].中原工学院学报,2021,32(4):16-21. 被引量:5
  • 2赵廷凯,柳永宁.温控电弧放电法大量制备单壁碳纳米管[J].物理学报,2004,53(11):3961-3965. 被引量:16
  • 3Ranzi E, Goldaniga A, Bozzano G, et al. Lumping Procedures in Detailed Kinetic Modeling of Gasfication, Pyrolysis, Partial Oxidation and Combustion of Hydrocarbon Mixture[J]. Progress in Energy Combustion Science, 2001,27.99-139.
  • 4Curran H J, Pitz W J, Westbrook C K, et al. Oxidation of Automotive Primary Reference Fuels at Elevated Pressures[C]//Twenty-Seventh Symposium(International) on Combustion. Colorado: The Combustion Institute, 1998,27:379-387.
  • 5Egolfopoulos F N, Du D X, Law C K. A Comprehensive Study of Methanol Kinetics in Freely-propagating and Burner-stabilized Flames, Flow and Static Reactors, and Shock Tubes[J]. Combustion Science and Technology, 1992, 83(1) :33-75.
  • 6Li Juan, Zhao Zhenwei, Kazakov A, et al. A Compre- hensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion [J]. International Journal of Chemical Kinetics, 2007,39 (3) : 109-136.
  • 7Shigeyuki Tanaka, Ferran Ayala, James C Keck. A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reserence Fuels in a Rapid Compression Machine[J].Combustion and flame, 2003, 133 (4)467-481.
  • 8Zheng J,Yang W, Miller D L, et al. A Skeletal Chemical Kinetic Model for the HCCI Combustion Process [C]. SAE Paper 2002-01-0423.
  • 9MacHrafi H, Guibert P, Cavadias S, et al. HCCI Engine Modeling and Experimental Investigation-Part 1: The Reduction, Composition and Validation of a N- heptane/Iso-octane Mechanism[J]. Combustion Science and Technology, 2007,179(12) :2561-2580.
  • 10Patrick Kirchen, Mahdi Shahbakhti, Charles Robert Koch. A Skeletal Kinetic Mechanism for PRF Combustion in HCCI Engines[J].Combustion Science and Technology, 2007,179 :1059-1083.

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部