摘要
针对粗糙集理论只限于处理清晰数据的不足,本文将粗糙集理论和模糊集理论相结合,通过计算决策属性相对于条属性的依赖度,并把这种度量方法用于模糊决策树的设计中,提出了一种基于模糊决策树的采煤机故障诊断算法。通过实分析,此方法能够提高采煤机故障诊断的准确性和效率。
To the restriction of rough set theory that can only handle the crisp data,this paper incorporated this measure that combined rough set theory with fuzzy set theory to calculate dependency degree of decision attribute on condition attribute into the design of fuzzy decision tree and proposed a shearer fault diagnosis algorithm based on fuzzy decision tree. It can enhance the accuracy and efficiency of shearer fault diagnosis by analyzing the experiment.
出处
《微计算机信息》
2009年第34期94-95,141,共3页
Control & Automation
基金
基金申请人:陈立潮
项目名称:基于Web的煤矿矿用设备安全监测与智能管理系统
基金颁发部门:山西省科技厅(20080321012-01)
关键词
粗糙集
模糊集
模糊决策树
故障诊断
采煤机
rough sets
fuzzy sets
fuzzy decision tree
fault diagnosis
shearer