摘要
著名的Falkner-Skan边界层方程″′f(η)+f(η)f″(η)+λ[1-(f′)2(η)]=0,η∈(0,∞)及边界条件f(0)=f′(0)=0,f′(∞)=1,0<f′(η)<1,η∈(0,∞)是流体力学领域最重要的方程之一.利用它的等价积分方程获得剪应力f″(η)新的估计,并改进了某些最近结果.
The well-known Falkner-Skan equation arising in the boundary layer problems f″(η)+f(η)f″(η)+λ[1-(f′)^2(η)]=0,η∈(0,∞)subject to the boundary conditiont:f(0)=f(0)=0,f′(∞)=1,0〈f′(η)〈1,η∈(0,∞)is one of the most important equations in the fluid mechanics. A new estimate of f″(η) is obtained by a singular integral equation equivalent to the Falkner-Skan equation. Some recent results are improved.
出处
《成都信息工程学院学报》
2009年第6期608-610,共3页
Journal of Chengdu University of Information Technology
关键词
泛函分析
微分方程边值问题
Falkner-Skan方程
边值问题
积分方程
functional analysis
differential equation arising in boundary layer theory
Falkner-Skan equation
boundary value problem
integral equation