期刊文献+

分数阶Bagley-Torvik方程的近似解 被引量:2

Approximate Solution for the Fractional-order Bagley-Torvik Equation
下载PDF
导出
摘要 将泰勒展开法应用到分数阶Bagley-Torvik方程,同时把方程分数阶取值范围由(0,1)推广到(1,2),使此方程更接近实际背景。最后,验证了该方法的高效性。 The method of Taylor' s expansion is applied to the Bagley-Torvik equation. The interval of fractional order is popularized from (0,1) to ( 1,2 ), which makes the Bagley-Torvik equation more close to the background of reality. The high efficiency of the method is validated.
作者 李皋 张春蕊
机构地区 东北林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2009年第12期132-133,共2页 Journal of Northeast Forestry University
基金 黑龙江省博士后科研基金资助(2006)
关键词 分数阶Bagley—Torvik方程 分数阶Riemann—Liouville定义 泰勒多项式 数值方法 Bagley-Torvik equations Riemann-Liouville definition Taylor' s expansion Numerical methods
  • 相关文献

参考文献4

二级参考文献12

  • 1Rionero S,Ruggeri T.Waves and Stability in Continuous Media[M].Singapore:World Scientific,1994.
  • 2Podlubny I.Fractional Differential Equations[M].New York:Academic Press,1999.
  • 3Benson D A,Wheatcraft S W,Meerschert M M.Application of a fractional advection-despersion equation[J].Water Resour.Res.,2000a,36(6):1 403-1 412.
  • 4Benson D A,Wheatcraft S W,Meerschert M M.The fractional-order governing equation of Lévy motion[J].Water Resour.Res.,2000b,36(6):1 413-1 423.
  • 5Bagley R L,Torvik P J.On the appearance of the fractional derivative in the behavior of real materials[J].J.Appl.Mech.,1984,51:294-298.
  • 6Samko S G,Kilbas A A,Marichev O I.Fractional Integrals and Derivatives:Theory and Applications[M].USA:Gordon and Breach Science Publishers,1993.
  • 7Oldham K B,Spanier J.The Fractional Calculus[M].New York and London:Academic Press,1974.
  • 8Miller K S,Ross B.An Introduction to the Fractional Calculus and Fractional Differential Equations[M].New York:John Wiley,1993.
  • 9Rektory K.Handbook of Applied Mathematics[M].Vols.I,II.Prague:SNTL,1988 (in Czech).
  • 10Doetsch.Anleitung zum Praktischen Gebrauch der Laplace-transformation,Oldenbourg[M].Moscow:Munich,1956.

共引文献17

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部