期刊文献+

采用时变电阻的水下高压放电模型 被引量:7

Model of Underwater High-voltage Discharge Using Time-varying Resistance
下载PDF
导出
摘要 水下高压脉冲放电过程中的瞬态物理现象非常复杂,放电通道等效电阻从放电初期的kΩ量级到中期的mΩ量级,为一时变参数。若在仿真计算中将它看作常数,则计算得到的放电电流在峰值和振荡周期上均与实验结果相差较大。为尽可能真实地反映放电特性,建立了放电水间隙时变等效电阻R(t),推导了等效放电回路方程,利用有限差分法进行求解,得出放电电流和放电电压的表达式,并将仿真波形与实验测量得到的放电电流和放电电压的波形进行了对比分析。结果表明,在放电电极时变等效模型基础得到的仿真结果相对于常数等效电阻的仿真结果,更接近实验结果,同时显示出有限差分方法在求解放电回路变系数微分方程时的有效性。 If two electrodes are stressed with a high voltage which creates a sufficiently strong electric field between the electrodes, the water between the electrodes is breakdown and a highly conductive discharge channel is formed, then discharge happens and sophisticated physical phenomena is involved in this process. Because of the discharge, the resistance of the channel changes from a few kilohms at the beginning of the discharge to only a few milliohms at the metaphase Therefore, it is not suitable to calculate the discharge current and voltage on the assumption that the resistance of the channel is invariable, although the calculation will be easy by treating it as a constant. Consequently, a time-varying model of the equivalent resistance of the electrodes was established, and the equivalent equation of the discharge circuit was established and solved with the finite difference method. The numerical expression of the discharge current was obtained. Furthermore, the experimental discharge current and voltage waveforms were meas ured. The comparison of calculations with the experimental results shows that good agreement is achieved when modification of the resistance of the channel is introduced.
出处 《高电压技术》 EI CAS CSCD 北大核心 2009年第12期3060-3064,共5页 High Voltage Engineering
基金 国家自然科学基金(10974154) 西北工业大学科技创新基金(W018105) 国家高技术研究发展计划(863计划)~~
关键词 水下放电 高压脉冲 放电电流 放电电压 时变电阻 有限差分法 underwater discharge high-voltage pulsed discharge current discharge voltage time-varying resistance finite difference method
  • 相关文献

参考文献17

  • 1Fennigkoh L, Traner M, Reimer D. Characteristics and performance of lithotripter electrodes[J].Clinical Eng, 1990, 15 (1) : 23-28.
  • 2Touryan K J, Touryan L A, Benze J W. An innovative use of pulsed power technology for separation of minerals from ores[C] // Proc 8th IEEE Int Pulsed Power Conf. San Diego, CA, USA: IEEE, 1991: 90-93.
  • 3Hofmann J, Weisse H. Pulsed power technologies for commercial materials reduction and crushing applications [C] // Proc 11th IEEE Int Pulsed Power Conf. Baltimore, MD, USA:IEEE, 1997: 203-207.
  • 4Mazzola M S, Grothaus M G, Walch M, et. al. New electrical control methods to prevent power plant fouling[C]// Proc 10th IEEE Int Pulsed Power Conf. Albuquerque, NM,USA: IEEE, 1995: 34-39.
  • 5依成武,吴春笃,徐玮,储金宇,陆从相.高压脉冲电场冲击波法的液体杀菌实验研究[J].高电压技术,2007,33(2):109-111. 被引量:10
  • 6张延宗,郑经堂,陈宏刚.高压脉冲放电水处理技术的理论研究[J].高电压技术,2007,33(2):136-140. 被引量:25
  • 7Yan P, Sun Y H, Zhou Y X, et al. Underwater sound source based on pulsed corona discharge[C]// Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Boulder, Colorado, USA: IEEE, 2004: 596-598.
  • 8Grinenko A, Krasik Ya E, Efimov S, et. al. Nanosecond time scale, high power electrical wire explosion in water[J]. Physics of Plasmas, 2006,13, 042701 : 1-14.
  • 9Madhavan S, Doiphode P, Kunda M, et. al. Modeling of shock wave generation in water by electrical discharges [C]// Proe 12th IEEE Int Pulsed Power Conf. Monterey, CA, USA: IEEE, 1999: 605-608.
  • 10左公宁.水中脉冲电晕放电的某些特性[J].高电压技术,2003,29(8):37-38. 被引量:14

二级参考文献62

共引文献62

同被引文献53

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部