摘要
设E1=argz=θj|0≤θ1<θ2<…<θq1<2π,E2=argz=φj0≤φ1<φ2<…<φq2<2π,且E1∩E2=Φ,q1和q2是任意正整数.证明了(1)存在Δ内下级为任一正数的无穷级亚纯函数f(z),恰以E1∪E2为其T-半径且恰以E2为其Borel半径;(2)存在Δ内下级为无穷的亚纯函数g(z),恰以E1∪E2为其Borel半径且恰以E2为其T-半径.
LetE1=arg z=θj0≤θ1θ2…θq12πE2=arg z=φj0≤φ1φ2…φq22πsuch that E1∩E2=,and q1 and q2 be positive integers.Then (1) there exists a meromorphic function f(z) of infinite order and finite positive lower order in,which takes the E1∪E2 as its T-radii and E2 as its Borel radii,(2) there exists a meromorphic function g(z) of infinite lower order in,which takes the E1∪E2 as its Borel radii and E2 as its T-radii.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第12期103-110,共8页
Journal of Southwest University(Natural Science Edition)