期刊文献+

单位圆内无穷级亚纯函数的T-半径和Borel半径 被引量:2

T-Radii and Borel Radii of Meromorphic Functions of Infinite Order in the Unit Disc
下载PDF
导出
摘要 设E1=argz=θj|0≤θ1<θ2<…<θq1<2π,E2=argz=φj0≤φ1<φ2<…<φq2<2π,且E1∩E2=Φ,q1和q2是任意正整数.证明了(1)存在Δ内下级为任一正数的无穷级亚纯函数f(z),恰以E1∪E2为其T-半径且恰以E2为其Borel半径;(2)存在Δ内下级为无穷的亚纯函数g(z),恰以E1∪E2为其Borel半径且恰以E2为其T-半径. LetE1=arg z=θj0≤θ1θ2…θq12πE2=arg z=φj0≤φ1φ2…φq22πsuch that E1∩E2=,and q1 and q2 be positive integers.Then (1) there exists a meromorphic function f(z) of infinite order and finite positive lower order in,which takes the E1∪E2 as its T-radii and E2 as its Borel radii,(2) there exists a meromorphic function g(z) of infinite lower order in,which takes the E1∪E2 as its Borel radii and E2 as its T-radii.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第12期103-110,共8页 Journal of Southwest University(Natural Science Edition)
关键词 亚纯函数 单位圆 BOREL半径 T-半径 meromorphic function unit disc Borel radii T-radii
  • 相关文献

参考文献9

二级参考文献23

共引文献29

同被引文献15

  • 1刘礼培,袁建军.亚纯函数与其微分多项式分担小函数的唯一性[J].西南师范大学学报(自然科学版),2006,31(6):11-14. 被引量:5
  • 2孙建武.具有亏函数的整函数与亚纯函数的复合增长性(英文)[J].西南师范大学学报(自然科学版),2006,31(5):47-51. 被引量:5
  • 3Hayman W K. Meromorphic Functions [M]. Oxford: Clarendon Press, 1964.
  • 4Yang L. Value Distribution Theory [M]. Berlin: Springer-Verlag, 1993.
  • 5Fang M L, Hua X H. Entire Functions that Share One Value [J]. J Nanjing Univ Math Biquarterly, 1996, 13(1):44 - 48.
  • 6Yang C C, Hua X H. Uniqueness and Value-Shring of Meromorphic Functions [J]. Ann Acad Sci Fenn Math, 1997, 22(12) : 395 - 406.
  • 7Fang M L. Uniqueness and Value-Shring of Entire Functions [J]. Compu Math App, 2002, 44: 828 -831.
  • 8Zhang X Y, Lin W C. Uniqueness and Value-Shring of Entire Functions [J]. J Mathematical Analysis and Applications, 2008, 2(11) : 938- 950.
  • 9Xu Y. Uniqueness of Meromerphic Functions Sharing One Value [J]. Computers and Mathematics with Applications, 2008: 180- 189.
  • 10Yang C C. On Deficiencies of Differential Polynomials II[J]. Math Z, 1972, 125:107 -112.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部