期刊文献+

微观尺度高分子协同组装ZnO纳米片 被引量:3

Polymer-Assisted Micro-Scale Assembly of ZnO Nanosheets
下载PDF
导出
摘要 以醇水混合体系作为反应介质,六水合硝酸锌和尿素为原料,聚乙烯吡咯烷酮(PVP)作为模板剂,经水热过程合成了由纳米片组装的花状微球碱式碳酸锌前驱体。经热处理得到相应的氧化锌(ZnO)产物。采用X射线衍射(XRD)和环境扫描电镜(SEM)对样品进行了表征,结果表明产物为六方纤维矿结构的ZnO,单分散花状微球直径约为2μm,尺寸均一,组装成微球的纳米片构筑单元厚度为20nm。红外分析表明PVP与Zn^2+之间的化学配位作用发生在侧环的内酰基C=O键上的O位与Zn^2+之间,研究表明PVP用量影响组装过程,在相同实验条件下,用聚乙二醇(PEG)代替PVP的模板作用,得到了粒径较大的纳米片组装的微球(Ф-15μm),在此基础上探讨了高分子结构对晶体生长和组装机制的影响。 The nanosheets-based flower-like micropheres of layer Zn.s(CO3)2(OH)6 precursor were prepared via hydrothermal process using polyvinyl pyrrolidone(PVP) as the template in a mixed solution of ethanol and water, and the corresponding ZnO nanosheets assembled microsphere was obtained by the following calcination treatment. The samples were characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM). The XRD pattern of the product is indexed very well to hexagonal wurtzite structure of ZnO. The monodispersed flower-like ZnO nanosheets microspheres have a nearly homogeneous size of -2μm, and the thickness of the nanosheets assembled building blocks is -20nm. The study shows that the concentration of PVP affects the assembly process. The size of ZnO micropheres increases to -15μm when polyethylene glycol(PEG) is used instead of PVP under the same experimental condition. The impact of polymer structure on the crystal growth and the assembly process is also discussed.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2009年第12期2077-2082,共6页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金重点项目(No.20636020) 江苏省科技支撑计划(No.BE2009679) 江苏省高校自然科学研究计划(No.08KJB150009)资助
关键词 水热合成 高分子 ZNO 微球 模板 hydrothermal synthesis polymer zinc oxide microspheres template
  • 相关文献

参考文献36

  • 1Ozgur U, Alivov Y I, Liu C, et al. J. Appl. Phys., 2005,98: 041301-3-041301-56.
  • 2Wang Y S, Thomas P J, OBrien P. J. Phys. Chem. B, 2006, 110:4099-4104.
  • 3Gao S Y, Zhang H J, Wang X M, et al. J. Phys. Chem. B, 2006,110:15847- 15852.
  • 4Wang X D, Song J H, Wang Z L, et al. Science, 2007,316: 102-105.
  • 5Jiang P, Zhou J J, Fang H F, et al. Adv. Funct. Mater., 2007,17:1303-1310.
  • 6Oekermann T, Yoshida T, Minoura H, et al. J. Phys. Chem. B, 2004,108:8364-8370.
  • 7ZENG Long-Yue(曾隆月).DAI Song-Yi(戴松元),WANG Kong-Jia(王孔嘉).Acta Physica Sinica(Wuli Xuebao),2005,54:53-57.
  • 8Goldberger J, Sirbuly D J, Yang P D, et al. J. Phys. Chem. B, 2005,109:9- 14.
  • 9Huang M H, Mao S, Yang P D, et al. Science, 2001,292: 1897- 1899.
  • 10Wang H Q, Li G H, Jia L C, et al. J. Phys. Chem. C, 2008, 112:11738-11743.

同被引文献40

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部