期刊文献+

超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究 被引量:2

Velocity gradient in Kelvin-Helmholtz instability for supersonic fluid
原文传递
导出
摘要 利用加权本质上无振荡(WENO)方法模拟超声速流体Kelvin-Helmholtz(KH)不稳定性,研究速度梯度对KH不稳定性线性增长率和后期非线性演化的影响.模拟发现超声速流体中的速度梯度对KH不稳定性具有较强的致稳作用,给出了包含速度梯度致稳的线性增长率经验公式.数值模拟和经验公式符合得很好.模拟给出了清晰的流场密度等值线,这说明WENO方法模拟超声速流体KH不稳定性具有较好的界面变形捕捉能力.模拟结果表明速度梯度影响KH涡的演化,在给定密度梯度的情况下速度梯度越大KH涡的横向尺度越小. Two-dimensional numerical calculations using weighted essentially non-oscillatory schemes(WENO) scheme were performed to study velocity gradient in the Kelvin-Helmholtz(KH) instability for supersonic fluid. It is found that the velocity gradient has a stabilization effect on the KH instability for supersonic fluid,and the linear growth rate empirical formula with velocity gradient stabilization effect is deduced. The empirical formula with velocity gradient stabilization effect agrees well will the simulation results. The sharp density contour is obtained,which indicates that the WENO finite difference scheme has good capturing ability in interface deformation. The evolution of KH vortex is influenced by the velocity gradient. When the density gradient is fixed,it is found that the larger the velocity gradient the smaller the transverse scale of the KH vortex.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第12期8426-8431,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2007CB815100) 国家自然科学基金(批准号:10775020 10874242) 高等学校博士学科点专项科研基金(批准号:20070290008)资助的课题~~
关键词 KELVIN-HELMHOLTZ不稳定性 超声速流体 速度梯度 Kelvin-Helmholtz instability supersonic fluid velocity gradient
  • 相关文献

参考文献20

  • 1Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability ( Oxford : Clarendon Press) p481.
  • 2Hasegawal H, Fujimoto M, Phan T D, Reme H, Balogh A, Dunlop M W, Hashimoto C, TanDokoro R 2004 Nature 430 755.
  • 3Foster J M, Wilde B H, Rosen P A, Perry T S, Fell M, Edwards M J, Lasinski B F, Turner R E, Girting M L 2002 Phys, Plasma. 9 2251.
  • 4Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755.
  • 5Walker J S 1993Phys. Fluids A 5 1466.
  • 6Horton W, Perez J C, Carter T, Bengtson R 2005 Phys. Plasma. 12 22303.
  • 7王立锋,叶文华,李英骏.二维不可压缩流体Kelvin-Helmholtz不稳定性的二次谐波产生[J].物理学报,2008,57(5):3038-3043. 被引量:10
  • 8WangLF, YeWH, LiYJ, MengLM2008 Chin. Phys. B 17 3792.
  • 9Wang L F, Ye W H, Fan Z F, Li Y J 2009 Chin. Phys. Lett. 26 014701.
  • 10Papamoschou D, Roshko A 1988 J. Fluid Mech. 197453.

二级参考文献18

  • 1POINSOT T J,LELE S K.Boundary conditions for direct simulations of compressible viscous flows[J].Journal of Computational Physics,1992,101(1):104-129.
  • 2SUTHERLAND J C,KENNEDY C A.Improved boundary conditions for viscous,reacting,compressible flows[J].Journal of Computational Physics,2003,191(2):502-524.
  • 3NICOUD F.Defining wave amplitude in characteristic boundary conditions[J].Journal of Computational Physics,1999,149(2):418-422.
  • 4GRINSTEIN F F.Open boundary conditions in the simulation of subsonic turbulent shear flows[J].Journal of Computational Physics,1994,115(1):43-45.
  • 5KLOKER M,KONZELMANN U,FASEL H.Outflow boundary bonditions for spatial Navier-Stokes simulations of transition boundary layers[J].AIAA,1993,31(4):620-628.
  • 6Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London : Oxford University) p481.
  • 7Yabe T,Hoshino H,Tsuchiya T 1991 Phys. Rev. A 44 2756
  • 8Rikanati A 2003 Phys. Fluids 15 3776
  • 9Youngs D L 1994 Laser Part. Beams. 12 725
  • 10Ye W H,Zhang W Y,He X T 2002 Phys. Rev. E 65 57401

共引文献15

同被引文献14

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部