摘要
Simulation of the core plasma parameters of HCSB-DEMO (helium-cooled solid breeder, HCSB), by using a 1.5D plasma transport code, was carried out. The study includes investigations of operational scenarios, temperature and density profiles of both ions and electrons, fusion and radiated power, distribution of the safety factor, sensitivity analyses for some input parameters as well as a primary estimate of the divertor heating load. The results indicate that the following fusion reactor parameters can be properly set for HCSB-DEMO, namely major radius of 7.2 m, aspect ratio of 3.4, elongation of 1.85, triangularity of 0.45, plasma current of 14.8 MA, normalized beta of 4.4, toroidal field (TF) of 6.86 T, average electron density of 1.5× 10^20 m^-3, average electron temperature of 14.5 keV, fusion power of 2.55 GW, neutron wall loading of 2.3 MW.m^-2 and fusion multiplication factor of 35.
Simulation of the core plasma parameters of HCSB-DEMO (helium-cooled solid breeder, HCSB), by using a 1.5D plasma transport code, was carried out. The study includes investigations of operational scenarios, temperature and density profiles of both ions and electrons, fusion and radiated power, distribution of the safety factor, sensitivity analyses for some input parameters as well as a primary estimate of the divertor heating load. The results indicate that the following fusion reactor parameters can be properly set for HCSB-DEMO, namely major radius of 7.2 m, aspect ratio of 3.4, elongation of 1.85, triangularity of 0.45, plasma current of 14.8 MA, normalized beta of 4.4, toroidal field (TF) of 6.86 T, average electron density of 1.5× 10^20 m^-3, average electron temperature of 14.5 keV, fusion power of 2.55 GW, neutron wall loading of 2.3 MW.m^-2 and fusion multiplication factor of 35.