期刊文献+

具偏差变元的四阶p-Laplacian方程周期解问题(英文)

Periodic Solutions for a Fourth-Order p-Laplacian Differential Equation With a Deviating Argument
下载PDF
导出
摘要 对一类具偏差变元的四阶p-Laplacian方程(φp(y″(t)))″+f(y(″t))+g(y(t-(τt)))=e(t)的周期解问题进行了研究.在一定的条件下,利用Mawhin延拓定理得到了周期解的存在性. In this paper,we study the existence of periodic solutions to a fourth-order p-Laplacian differential equation with a deviating argument of the form (φp(y″(t)))″+f(y″(t))+g(y(t-τ(t)))=e(t).Under various assumptions,the existence of periodic solutions are obtained by Mawhin s continuation theorem.
作者 陈业 鲁世平
出处 《安徽师范大学学报(自然科学版)》 CAS 北大核心 2009年第6期511-517,共7页 Journal of Anhui Normal University(Natural Science)
基金 Sponsored by the NSF of Anhui Province of China(2005kj031ZD 050460103) the Teaching and Research Award Program for Excellent Teachers in Higher Education Institutions of Anhui Province of China the key NSF of Education Ministry of China(No.207047).
关键词 周期解 P-LAPLACIAN方程 延拓定理 periodic solution p-Laplacian equation continuation theorem
  • 相关文献

参考文献11

  • 1CHEUNG W S, REN Jing-li. Periodic solution for p- Laplacian Rayleigh equations[J]. Nonlinear Analinear, 2006,65:2003-2012.
  • 2FABRY C, FAYYAD D. Periodic solutions of second-order differential equations with a p- Laplacian and asymmetric nonlinearities[J]. Rend Istit Univ Trieste, 1992,24 : 207 - 227.
  • 3LU Shi-ping, GUI Zhan-jie. On the existence of periodic solutions to a p- Laplacian Rayleigh differential equation with a delay[J]. J Math Anal Appl, 2007,325 ( 1 ) : 685 - 702.
  • 4CHEUNG W S, REN Jing-li. On the existence of periodic solutions for p- Laplacian generalized Lienard equation[J]. Nonlinear Anal,2005,60 (1):65-75.
  • 5LU Shi-ping, GE Wei-gao. Sufficient conditions for the existence of periodic solutions to some second-order differential equations with a deviating argument[J]. J Math Anal Appl, 2005,308(2) : 393 - 419.
  • 6PAO C V. On fourth-order dlliptic boundary value problems[J]. Proc Amer Math Soc, 2000,128:1023 - 1030.
  • 7BAI Z B GE Weigao. The interative solutions for some fourth order p-Laplacian equation boundary value problems[J]. Appl Math Letters, 2006,19:8 - 14.
  • 8GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations[M]. Berlin: Springer, 1977.
  • 9ZTHANG Mei-rong. Nonuniform nonresonance at the first eigenvalue of the p- Laplacian differential equation with a deviating argument[J]. Nonlinear Anal doi : 10.1016/j. na. 2007.07.016.
  • 10ZHANG Mei-rong. Nonuniform nonresenance at the first eigenvalue of the p- Laplacian. Nonlinear Anal, 1997,29(1):41 -51.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部