期刊文献+

一种基于异构系统发现日志本体关联规则的方法 被引量:1

Approach for Discovering Association Rules from Log Ontologies Based on Hybrid System
下载PDF
导出
摘要 构建日志本体之上的访问模式关联规则是语义Web使用挖掘的主要任务之一。在DL-safe规则的限定下,将日志本体和一阶应用规则相结合,构成异构日志知识库,以提高Web日志系统的知识表示和推理能力。在此基础上借助ILP理论从异构日志知识库中挖掘出频繁用户访问模式,并生成访问模式关联规则,以发现用户访问行为之间更丰富的潜在关联知识。该方法提高了语义Web使用挖掘的质量,为改进站点结构提供了更有效的决策知识。实验结果证明了该方法的可行性和有效性。 Building access pattern association rules on top of log ontologies is one of the main tasks of semantic Web usage mining. With the restrictions of DL-safe rules, we combined log ontologies with first-order application rules to build a hybrid log knowledge base. It can improve the capability of knowledge representation and reasoning of Web log system. After mining the frequent user-access patterns from the hybrid system through ILP theory, the access pattern association rules can be constructed to discover the potential associations between user-access behaviors. This method improves the results of semantic Web usage mining and provides more decision-making for optimizing the structure of Web sites. The experimental results show that this method is effective and quite feasible to solve practical problems.
出处 《计算机科学》 CSCD 北大核心 2009年第12期187-190,共4页 Computer Science
基金 国家"十一五"科技支撑计划重大资助项目(2006BAH02A0407) 国家自然科学基金(90604033)资助
关键词 语义Web使用挖掘 日志本体 异构系统 关联规则 归纳逻辑编程 Semantic Web usage mining, Log ontology, Hybrid system, Association rule, Inductive logic programming (ILP)
  • 相关文献

参考文献11

  • 1Berendt B, Hotho A, Stumme G. Usage. Mining for and on the Semantic Web[C]//Data Mining Next Generation Challenges and Future Directions. Boston: AAAI Press, 2004 : 461-481.
  • 2Jozefowska J, Lawrynowicz A, Lukaszewski T. On reducing redundancy in mining relational association rules from the Semantic Web[C]// Proceedings of the 2nd International Conference on Web Reasoning and Rule Systems, RR 2008. Heidelberg, Germany: Springer Verlag, 2008 : 205-213.
  • 3Motik B, Sattler U, Studer R. Query answering for OWL - DL with rules[J]. Web Semantics.. Science, Services and Agents on the World Wide Web,2005,3(1):41-60.
  • 4Francesco M D, Maurizio L, Daniele N, et al. AL-log: Iintegrating datalog and description logics [J]. Intelligent Information Systems, 1998,10(3):227-252.
  • 5Levy Y A,Rousset M C. Combining Horn rules and description logics in CARIN [J]. Artifician Intelligence, 1998, 104 ( 1/2 ): 165-209.
  • 6Horrocks I. A proposal for an OWL rules language[C]//Proceedings of the Thirteenth International World Wide Web Conference. New York: ACM, 2004 : 723-731.
  • 7Motik B, Sattler U. A comparison of reasoning techniques for querying large description logic ABoxes[C]// Proceedings of the 13th International Conference on Logic for Programming Artificial Intelligence and Reasoning, LPAR 2006. Heidelberg: Springer Berlin, 2006 : 227- 241.
  • 8Francesca A L. An ILP approach to ontology refinement for the semantic Web[C]//Proceedings of the 4th European Semantic Web Conference. Springer, 2007.
  • 9Francesca A L,Donato M. Inducing multi-level association rules from multiple relations[J]. Machine Learning, 2004,55:175-210.
  • 10Jozefowska J, Lawrynowicz A, Lukaszewski T. A study of the SEMINTEC approach to frequent pattern mining[C]//Proceedings of PriCKL 2007, ECML/PKDD' 2007 Workshop on Prior Conceptual Knowledge in Machine Learning and Knowledge Discovery. Warsaw, Poland. 2007: 41-52.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部