期刊文献+

准静态近似条件下电流耦合型人体通信模型的建立与验证 被引量:11

Construction and Validation of Galvanic Coupling Human Intra-body Communication Model with Quasistatic Approximation
下载PDF
导出
摘要 目的建立准静态近似条件下电流耦合型人体通信的电磁理论模型,并验证模型的正确性。方法以人体前手臂为研究对象,讨论人体组织在电流耦合型人体通信过程中满足准静态近似的条件,并由麦克斯韦方程推导出电磁模型的解析解;进而选用圆柱形火腿肠作为实验模拟对象,验证模型的正确性。结果构建了准静态近似条件下人体通信的电磁模型,模型计算值与试验测值间偏差不超过10%;描绘出人体模型在贴附有环形电极的情况下,直径切面的电位分布及衰减情况。结论得到了电流耦合型人体通信在满足准静态近似条件下的电磁理论模型,为人体通信技术提供了初步的理论依据。 Objective To establish intra-body communication (IBC) model with quasi-static approximation and validate its correctness. Methods The quasi-static approximation conditions of human tissues were discussed. Based on the Maxwell Equations, the model of galvanic coupling IBC was developed analytically. It was assumed that the human forearm was equal to column with a pair of ring electrodes. Sausage column was selected to be the experimental object for validating the correctness of the model. Results Galvanic coupling IBC model was established. The deviation of model calculated results from test measured potentials was less than 10% , and the correlation coefficient was more than 0. 998. The potential distribution and attenuation were depicted with the model. Conclusion Under quasi-static approximation condition the galvanic coupling IBC electromagnetic theoretic model is developed and validated. It is provided the preliminary theoretic base on IBC teehnique.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2009年第6期427-432,共6页 Space Medicine & Medical Engineering
基金 澳门科技发展基金(014/2007/A1) 福建省科技厅重点项目(2007Y0024 2007T0009 2008J1005) 澳门大学科研基金(RG075/07-08S/VMI/FST)
关键词 人体通信 电流耦合 麦克斯韦方程 建模 解析解 human intra-body communication galvanic coupling Maxwell equations modeling analyties
  • 相关文献

参考文献17

  • 1Zimmerman TG. Personal Area Networks (PAN) : Near-Field Intra-Body Communication, in Media Art and Science [ D ]. Massachusetts Institute of Technology,1995.
  • 2Gao YM,Pun SH, Du M, et al. A preliminary two dimensional model for intra-body communication of body sensor networks [ C ]. Processings of Intelligent Sensors, Sensor Networks and Information. Sydney, IEEE, 2008: 273-278.
  • 3Wegmueller MS, Oberle M, Felber N, et al. Galvanical coupling for data transmission through the human body [ C]. Proceedings of Instrumentation and Measurement Technology Conference, Sorrento, IEEE, 2006: 1686-1689.
  • 4Partridge K,Dahlquist B, Veiseh A, et al. Empirical measurements of intrabody communication performance under varied physical configurations [ C ]. Symposium on User Interface Software and Technology Orlando, Florida, UIST, 2001: 183-190.
  • 5Hachisuka K, Nakata A, Takeda T, et al. Development and performance analysis of an intra-body communication device [ C]. 12th International Conference on Transducers, Solid- State Sensors, Actuators and Microsystcms, Boston, IEEE, 2003 : 1722 - 1725.
  • 6Fujii K,Takahashi M, Ito K. Electric field distributions of wearable devices using the human body as a transmission channel [ J ]. IEEE Trans. On Antennas and Propagation,2007, 55(7) : 2080-2087.
  • 7Lindsey DP, Mckee EL, Hull ML, et al. A new technique for transmission of signals from implantable transducers [J].IEEE Trans on Biota Eng, 1998, 45(5) : 614-619.
  • 8Handa T,Shoji S, Ike S, et al. A very low-power consumption wireless ECG monitoring system using body as a signal transmission medium [C]. International Conference on Solid State Sensors and Actuators, Chicago, IEEE, 1997: 1003-1006.
  • 9Wegmuller MS, Kuhn A, Froehlich J, et al. An attempt to model the human body as a communication channel [ J ]. IEEE Trans Biomed Eng, 2007, 54(10) : 1581-1587.
  • 10Plonsey R. The Biomedical Engineering Handbook[M]. Second Edition. Boca Raton: CRC Press LLC, 1995:119-125.

同被引文献96

引证文献11

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部