期刊文献+

用小波熵评价人体步态变化 被引量:3

The Assessment of Human Gait Function Based on Wavelet Entropy
下载PDF
导出
摘要 目的将小波熵应用于步态数据量化分析,探寻新的评价人体步态功能变化的特征参数。方法运用Bertec三维测力系统,采集10名青年被试者和10名老年被试者的足-地反作用力步态数据,采用离散正交小波变换分解被试组步态数据,定义相对小波能量和小波熵,用t-检验法分别检验基于两个被试组步态数据的相对小波能量及小波熵的差异,来评价人体步态功能变化。结果基于两个被试组步态数据的相对小波能量差异显著;基于老年被试组步态数据的小波熵值明显低于基于青年被试组步态数据的小波熵值,显著性水平值P<0.05,基于两个被试组步态数据的小波熵具有显著差异。结论相对小波能量可提供步态数据中与人体步态功能内在变化相关的细节信息,小波熵能够表征人体步态内在动态变化程度,有望成为临床上可有效评估人体步态功能变化的特征参数。 Objective To seek a useful index for assessing the change of human gait function based on the application of wavelet entropy in the gait data analysis. Methods The ground reaction force (GRF) gait data of 2 groups( 10 young and 10 elderly subjects) were acquired with Bertec 3 dimensional force measured system (a strain gauge force platform) during normal walking. The orthogonal discrete wavelet transform was used for decomposing the collected gait data. The relative wavelet energy and wavelet entropy were defined and calculated respectively. They were statistically analyzed with t - test technique respectively to evaluate the change of human gait function. Results There was significant difference between the relative wavelet energy from GRF gait data of the two subject groups. The average values of wavelet entropy from the GRF gait data of elderly subject group were obviously less than those from the GRF gait data of young subject group. With the value of significance level of t-test P 〈 0.05, there was significant difference between wavelet entropy of 2 groups. Conclusion The relative wavelet energy can provide the detailed information associated with the change of hu- man gait function in gait data, and the wavelet entropy is able to characterize the degree of the intrinsic change of the human locomotive system. The wavelet entropy can serve as a new index to describe the change of human gait function in future clinical application.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2009年第6期437-442,共6页 Space Medicine & Medical Engineering
基金 国家自然科学基金资助项目(60271025) 福建省青年科技人才创新项目(2008F3037)
关键词 步态分析 小波熵 步态特征 力学步态数据 老年人 gait analysis wavelet entropy gait feature kinetic gait data oldster
  • 相关文献

参考文献16

  • 1Sutherland DH. The evolution of clinical gait analysis part Ⅲ - kinetics and energy assessment [ J]. Gait & Posture, 2005, 21 (4) :447-461.
  • 2Sutherland DH. The evolution of clinical gait analysis: Part Ⅱ Kinematics[J]. Gait & Posture, 2002, 16(2) : 159-179.
  • 3Chau T. A review of analytical techniques for gait data. Part 1 : Fuzzy, statistical and fractal methods [ J ]. Gait and Posture, 2001, 13(1): 49-66.
  • 4Chau T. A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods [ J ]. Gait and Posture. 2001.13(2) :102-120.
  • 5Olney SJ, Griffin MP, McBride ID. Multivariate examination of data from gait analysis of persons with stroke[ J]. Physical Therapy, 1998, 78(6) : 814-828.
  • 6Marghitu DB, Nalluri P. An analysis of greyhound gait using wavelets[ J]. Journal of Electromyograph and Kinesiology, 1997,7(3) :203-212.
  • 7Shannon CE. A mathematical theory of communication [ J ]. Bell Syst Techn Journal, 1948, 27:379-423.
  • 8Rosso OA,Blanco S, Yordanova J, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals [J]. Journal of Neuroscience Methods, 2001, 105 (1) :65- 75.
  • 9Christopher L, Davis BL, Connor JC. Dynamic of Human Gait[ M ]. 2nd Edition. Kiboho Publishers, 1999:63-76.
  • 10Mallat S, Zhong S. Characterization of signals from multiscale edges[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1992, 14(7):710-732.

二级参考文献1

  • 1全国统计方法应用标准化技术委员会.数据的统计处理和解释[M].杭州:浙江大学出版社,1991.24.

共引文献18

同被引文献41

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部