期刊文献+

基于可靠地估计反射方位和边界的构造约束保边滤波(英文) 被引量:1

Structure-oriented edge-preserving smoothing based on accurate estimation of orientation and edges
下载PDF
导出
摘要 本文给出一种既能有效衰减地震噪音又可保护地层及构造的不连续性的新方法。构造约束保边平滑技术需要已知反射局部方位和边界信息,通常这些信息由全频率地震资料估算获得,但在资料信噪比很低的情况下,噪音往往会降低估算的可靠度。对于信噪比极低的地震资料,其主频成分相对非主频成分信噪比高,所以由主频资料获取的方位和边界信息比由其它频率成分获取的更可靠。方位和边界信息通常用倾角和相干值差异来描述。由于不同频率所引起的倾角和相干值差异的变化均比地震记录的变化缓慢,所以由主频资料获取的倾角及边界信息能够近似代表所有频率成分的倾角及边界信息。Ricker子波广泛用于地震勘探,Marr小波与Ricker子波在时间和频率域均具有相同的形态,所以选用Marr小波变换将地震数据按照倍频程分为几个分频体。扫描主频分频体,用不等权二次曲面拟合并求解极大值来获取视倾角,通过比较9个滑动窗口的相干值来确定反射边界。将这些信息用构造约束保边平滑技术可选择性地(selectively)对主频、低频、高频分频体做平滑处理,最后将平滑后的各频段地震记录合成为滤波去噪后的地震记录。理论模型和实际资料处理效果表明该方法能有效压制噪音,保护边界,保护同相轴的连续性,且灵活地保留地震记录中的有用信息。 In this paper, we present a new method for reducing seismic noise while preserving structural and stratigraphic discontinuities. Structure-oriented edge-preserving smoothing requires information such as the local orientation and edge of the reflections. The information is usually estimated from seismic data with full frequency bandwidth. When the data has a very low signal to noise ratio (SNR), the noise usually reduces the estimation accuracy. For seismic data with extremely low SNR, the dominant frequency has higher SNR than other frequencies, so it can provide orientation and edge information more reliably than other frequencies. Orientation and edge are usually described in terms of apparent reflection dips and coherence differences, respectively. When frequency changes, both dip and coherence difference change more slowly than the seismogram itself. For this reason, dip and coherence estimated from dominant frequency data can approximately represent those of other frequency data. Ricker wavelet are widely used in seismic modeling. The Marr wavelet has the same shape as Ricker wavelets in both time and frequency domains, so the Marr wavelet transform is selected to divide seismic data into several frequency bands. Reflection apparent dip as well as the edge information can be obtained by scanning the dominant frequency data. This information can be used to selectively smooth the frequency bands (dominant, low, and high frequencies) separately by structure-oriented edge-preserving smoothing technology. The ultimate noise-suppressed seismic data is the combination of the smoothed frequency band data. Application to synthetic and real data shows the method can effectively reduce noise, preserve edges, improve trackable reflection continuity, and maintain useful information in seismic data.
出处 《Applied Geophysics》 SCIE CSCD 2009年第4期367-376,395,共11页 应用地球物理(英文版)
基金 supported by China National Petroleum Corporation (CNPC) Innovation Fund (Grant No.07E1019) Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (Grant No.200804251502)
关键词 边缘平滑 结构化 估计 基础 orientation, edge, dominant frequency, wavelet transform, structure-oriented edge-preserving smoothing
  • 相关文献

参考文献21

  • 1A1BinHassan, N. M., Luo, Y., and A1-Faraj, M. N., 2006,3D edge-preserving smoothing and applications: Geophysics, 71(4), 5 - 11.
  • 2A1-Dossary, S., and Marfurt, K. J., 2004, Inter-azimuth coherence attribute for fracture detection: 74th Ann. Internat. Mtg., Eur. Assn. Expl. Geophys., Expanded Abstracts, 183 - 186.
  • 3A1-Dossary, S., and Marfurt, K. J., 2006, 3D volumetric multispectral estimates of reflector curvature and rotation: Geophysics, 71(5), 41 - 51.
  • 4AI-Dossary, S., and Marfurt, K. J., 2007, Lineament- preserving filtering: Geophysics, 72(1), 1 - 8.
  • 5Bahorich, M. S., and Farmer, S. L., 1995, 3-D seismic discontinuity for faults and stratigraphic features, The coherence cube: The Leading Edge, 16(4), 1053- 1058.
  • 6Bakker, R, L. J. van Vliet, and P.W.Verbeek,1999, Edge- preserving orientation adaptive filtering: Proceedings of the IEEE-CS Conference on Computer Vision and Pattern Recognition, 535 - 540.
  • 7Boncelet, C., R. Hardie, and G. Arce, 1991, LUM filters for smoothing and sharpening, in Dougherty, E. R., Arce, G.R., and C. G. Boncelet Jr, Eds., Nonlinear image processing II: Proceedings of SPIE, 1451, 70 - 73.
  • 8Dalley, R. M., Gevers, E. E. A., Stampli, G. M., Davies, D. J., Gastaldi, C. N., Ruijetnberg, ER., and Vermeer, G. J. D., 1989, Dip and azimuth displays for 3-D seismic interpretation: First Break, 7(1), 86 - 95.
  • 9Gersztenkom, A., and Marfurt, K. J., 1999, Eigenstructure- based coherence computations as an aid to 3-D structural and stratigraphic mapping: Geophysics, 64(5), 1468 - 1479.
  • 10Gulunay, N., Holden, J., and Connor, J., 2007, Coherency enhancement on 3D seismic data by dip detection and dip selection: 77th Ann. Internat. Mtg., Eur. Assn. Expl. Geophys., Expanded Abstracts, 2625 - 2629.

同被引文献16

  • 1杨立强,宋海斌,郝天珧,江为为.基于二维小波变换的随机噪声压制方法研究[J].石油物探,2005,44(1):4-6. 被引量:43
  • 2马朋善,王继强,刘来祥,崔世凌.Morlet小波分频处理在提高地震资料分辨率中的应用[J].石油物探,2007,46(3):283-287. 被引量:36
  • 3Luo Y, Marhoon M, Al-Dossary S, et al. Edgepreserving smoothing and applications[J]. The Leading Edge,2002,21(1) : 136-158.
  • 4AlBinHassan N M, Luo Y, Al-Faraj M N. 3D edgepreserving smoothing and applications[J]. Geophysics,2006,71(4) :5-11.
  • 5Al-Dossary S, Marfurt K J. Lineament-preserving filtering[J]. Geophysics, 2007,72 ( 1 ) : 1-8.
  • 6Hocker C, Fehmers G. Fast structure interpretation with structure-oriented filtering[J].The Leading Edge, 2002,21 (2):238-243.
  • 7Dalley R M, Gevers E A, Stampli G M, et al. Dip and azimuth displays for 3-D seismic interpretation[J].First Break, 1989,7(1) : 86-95.
  • 8Marfurt K J,Kirlin R L. 3-D broad-band estimates of reflector dip and amplitude[J].Geophysics,2000, 65(1):304- 320.
  • 9Marfurt K J. Robust estimates of 3-D reflector dip and azimuth[J]. Geophysics, 2006,71 (4) :29-40.
  • 10Gabriel P,Marfurt K J. New azimuthal binning for improved delineation of faults and fractures[J]. Geophysics, 2008,73 (1):S7-S15.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部